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Fast Searchable Encryption with Tunable Locality LEeion

loannis Demertzis, Charalampos Papamanthou (University of Maryland)

Problem: Privacy Preserving Querying via Searchable Encryption.

Our Searchable Encryption scheme has:

1. Formal proofs based on CRYPTO security definitions
2. Improved Efficiency

a. Up to 580x for external disk - Encrypt(DB)
b. Up to 12x in-memory Client

3. Different trade-offs tuning

a. Space Later:
False Positives

Locality -

Parallelism ~ Client Encrypted(results) Cloud

© o0 T

Communication overhead




= Cryptanalysis of Comparable Encryption in SIGMOD’16 | Encryption |
Caleb Horst (UW Tacoma) & Ryo Kikuchi, Keita Xagawa (NTT Secure Platform Laboratories)

Problem: Can a cloud break comparable encryption in [Karras et al. SIGMm0oD16]?
A token allows Il Sortable 1!l Decryptable
d|V|S|on w/ two tokens w/ two plaintexts

O O O O




Z BLOCKBENCH: A Framework for Analyzing Private Blockchains
Tien Tuan Anh Dinh, Ji Wang (NUS) ; Gang Chen (Zhejiang U.); Rui Liu,

Beng Chin Ooi, Kian-Lee Tan (NUS)

I Encryption

P Pr Obl em: Bl(l):ykgrsain Contracts Application 5;:.593&‘)3315(, BL\,?{C:?:EEQJSCH
o Understanding and comparing existing blockchain Samplhers VMY Essctition Sigiine: | 2T Re
systems, for data processing workloads o -
° C h 3 | I en g es: :;2::;.3:0;? Data Model 10-Heavy
o Vast design space, many platforms, lack of data POFT. sto. Consensus [ Commits
processing workloads
e BLOCKBENCH: [oriosacien] ]| [werkioaaciend |
o 4 layers of abstraction, extensible framework, with ( WorkioadConnector )
macro- and micro-benchmark workloads - L g 4 L
. Confi i Dri S Coll
O  Used to analyze Ethereum, Hyperledger Fabric and [ °r 'g”rat"’”] [ er ] [tats ° emﬂ
Parity

4~ L JL

|BlockchainConnector

— 4 3 )
@thereum) (Parity) (HyperledgeD (ErisDB)




Living in Parallel Realities — Cleaning

Co-Existing Schema Versions with a Bidirectional Database Evolution Language
Kai Herrmann, Hannes Voigt, Andreas Behrend, Jonas Rausch, Wolfgang Lehner (TU Dresden)

i Developer

!

App V; App Vigq

— —
D; ¥ Di+1"
DBA
/N A\ 4

V/ ~ vA AA
0 Dresden Database vv

Systems Group
INVERDA

Co-Existing
Schema
Versions




Synthesizing Mapping Relationship Using Table Corpus Cleaning
Yue Wang (U. Massachusetts Amherst); Yeye He (Microsoft Research)

Input: 100M+ web tables Output: Synthesized Mappings Why Synthesis?
sy poT ST T T T —————————— e Better coverage,
SN Compan Tickerlll  Country 1O |
- s Microsoft MSFT United States USA €.g., synonyms.
& ~~ Microsoft Corp.  |[MSFT  United States of America| USA e Easy to curate

LT Microsoft Inc. MSFT Korea (Republic) KOR
Synthesize Intel INTC Korea (South) KOR

|

e |

General Electric GE Republic of Korea KOR :

wee e wee e ,

s - . P

-

S

- . . S S S S S e e e e e e . O O . S S S S S S S e e e e e e e .

ID___ Employee Compan
Microsoft Corp. .. => MSFT MSFT
Walmart .. = WMT INTC
Oracle >< GE INTC
General Electric ORCL Microsoft == MSFT

AT&T Inc. UPS Intel == INTC



Waldo: An Adaptive Human Interface for Crowd Entity Resolution | Cleaning

Vasilis Verroios, Hector Garcia-Molina (Stanford)
& Yannis Papakonstantinou (UC San Diego)
4 Computer Algorithms N

Human Tasks )
Pairwise Multi-Iltem

f

@
@
o
O




ZipG: A Memory-efficient Graph Store Tree & Graph

for Interactive Queries

Anurag Khandelwal’, Zongheng Yang’, Evan Ye', Rachit Agarwal®, lon Stoica” ('UC Berkeley, TCornell University)

Interactive graph serving

e Social networks
o FB, Twitter, LinkedIn

e Graphs are huge
o E.g., FB: ~billion nodes, ~trillion
edges, rich attributes — 1.5 PB of
data
e Graph queries: complex
o  Exhibit little or no locality
o E.g., “Friends of my friends in
Chicago”
e Interactivity requirements
o Low latency, high throughput

ZipG, a memory-efficient graph store

e Executes queries directly on
compressed graph representation
o  No decompressions or scans

e Rich functionality

o  Queries from several industrial workloads;
Regular path queries & graph traversals

e New log-structured graph storage
o Efficiency for both read & write queries




All-in-One: Graph Processing in RDBMSs Revisited | Tree & Graph

Kangfei Zhao & Jeffrey Xu Yu (CUHK)

Graph Analytics

PageRank, Shortest Distance,
Weakly Connected Component,
Hyperlink-Induced Topic Search,
Label Propagation,
Topological Sort, etc.

. /’/ Our Enhanced \\
{/rSQL—QQ recursio?\ Recursive Query

/’
Monotonic RA\ Non-monotonic RA

= MV-Join
o, T, X = MV-Join
U, ) =  Anti-Join
Generated \_ = Union-by-Update

SQL/PSM Stratified Program

\\I;east Fixed Point // XY-Stratified Program
\\ Iterative Fixed Point




Computing A Near-Maximum Independent Set

in Linear Time by Reducing-Peeling

Lijun Chang (UNSW Sydney), Wei Li, Wenjie Zhang

I Tree & Graph

Objective: compute large independent set for large graphs in a time-efficient (Subquadratic or more
desirable linear to m) and space-effective (2m + O(n) space) manner

o mis the number of undirected edges
ithm | Time Complexity Space Complexity Exact Reduction Rules Used

BDCne Nm) 2m + (On) Degree-one reduction [21]

BDTwo O ) G + O Degree-one reduction [21] & Degree-two vertex reductions [21]
LinearTime m) 2m + (in) Degree-one reduction [21] & Degree-two path reduction (this paper)
MNearLinear e % A) dm + Oin) Dominance reduction [21] & Degree-two path reduction (this paper)

Table 1: Overview of our approaches (n: number of vertices, m: number of edges, A: maximum vertex degree)
Graphs Independence Gap to the Independence Number Accuracy Kernel Graph Size
Numbser Greedy DU SemiE || EDOne | BDOTwo | LinearTime | Mearlinear | of MearLinear by NearLinear
Gric 2450 5 1 1 V] 0 [i] o 1005 [1]

CondMat 9612 17 5 1 4 2 1 o 1005 1]

AstroPh 6,760 4 10 1 2 0 i o 1005 L]

Email 246,898 76 0 1 0 [} 1] o 1005 1]

Epinions 53,5949 170 3 14 0 i i} 0 100% 6

dblp 434,289 484 63 53 43 3 4 o 1005 0

wiki-Talk 2,338,222 536 0 14 4] 0 1] o 100F5 0

BerkStan 408,482 11002 | 3,000 | 4,458 1,088 385 T66 428 00.895% 55,990

as-Skitter 1,070,580 34,591 | 2,336 | 5886 319 55 170 39 99.997% 9,733

in-2004 o6, 724 14832 | 3553 | 5918 656 351 412 57 Q09035 19,575

Livel 2,631,903 32997 | 6,038 | 7,364 1,494 343 378 33 99.998% 10,173
hollywood 327,049 a8 45 B 16 4 4 o 1005 0

Table 3: The gap of the reported independent set size to the independence number computed by VGSolver [1] (* denotes that the independent
set is reported as a maximum independent set by our algorithms)




Utility-Aware Ridesharing on Road Networks | Space & Multidim

Peng Cheng, Hao Xin, Lei Chen (HKUST)

B iy G Design the schedules for the vehicles

orii! to maximize the overall satisfaction of
i o b riders under the constraints:
T I e the deadlines of the riders
g A B e T e e the capacity of the vehicles

Riders’ Satisfaction:

e Vehicle (Driver)-Related Utility
e Rider-Related Ultility

e Trajectory-Related Utility




Distance Oracle on Terrain Surface Space & Multidim

Victor Jungiu Wei (HKUST), Raymond Chi-Wing Wong (HKUST),
Cheng Long (Queen’s University Belfast), David M. Mount (U of Maryland)
Problem

Given two POls s and t on the terrain surface, estimate the geodesic distance between s and t.

Existing Method

e Computing Geodesic Distance On-The-Fly
o  Very Large Query Time
e Distance Oracle
o g-approximate (¢ is a user-specified parameter)
o Introduces a large amount of Steiner points/edges
o Large Space and Building Time

Contributions

e We proposed a Distance Oracle, SE.
e Accuracy Guarantee: e-approximate (€ is a user-specified parameter)
e Significantly outperforms State-of-the-Art

Building Time: 1-2 orders of magnitude smaller
Oracle Size: 1-3 orders of magnitude smaller
Query Time: 2-3 orders of magnitude smaller
With the same error guarantee €




8%

Efficient Computation of Top-k Frequent Terms | Space & Multidim

over Spatio-Temporal Ranges
Pritom Ahmed, Mahbub Hasan, Abhijith Kashyap, Vagelis Hristidis and Vassilis J Tsotras (UC

Riverside)
e kFST Problem: Given a spatio-temporal region Rq m]=] |
find the most frequent terms among the social / \
posts in RQ cT ==
e Setting: No predefined region borders, large disk / o e \
resident data, exact answers e ] ]
e Obvious solution: Use R-tree

e Our solution:
o  STL-enhanced indexing and top-k algorithms
o Theoretical model to optimize STL space
requirements T E ] B P B
O  Space versus query trade-offs
© various indexing options from no STLs to full
and/or partial STLs

. )
STLefR, \
BRI\ =

3
<0,l0¢,13, <0 loc 17, <oyloc > | 3 Y wloc 1>
2

<0, L0, 1, <0y Loe, 1>

<0, loc 1> 1 t < Loc 1> 1

Fle | e |s

<oyhocl> 1 t <aploc, 1> 1
STLof Ry STLof R, STL of Rg. STLofRs




) Optimizing Iceberg Queries with Complex Joins

Brett Walenz, Sudeepa Roy, Jun Yang (Duke U.)

iceberg query, noun, saL.

aggregate query with arbitrary, complex joins and having 1 148.0

clause o
o

1. Formulate existing problems as iceberg queries g ™
. L

J Mar-ket basket analysis 2 50
e Skyline -
i af

2. Completely new framework for combining
complementary techniques from existing problems

3. Formal conditions for applicability of technigues
4. Implementation in Postgres

DO
ot

o

-
)
w
M)
el
of
)
172]
@)
el

Opt & MainMem

o
N

Vendor A
lceberg Opt




) The Dynamic Yannakakis Algorithm: Compact and Efficient Query Processing Under Updates

Muhammad Idris, Stijn Vansummeren and Martin Ugarte Opt & MainMem

1 2
Dynamic Query Evaluation m |Incremental View Maintenance
Keep (sub) results materialized
How to quickly

react under database
3
Can we avoid the tradeoff?

Only change what is necessary

updates

4
Dynamic Yannakakis

Desiderata: A practical algorithm
In-memory data structure
Constant-delay enumeration of results Desiderata J
Space linear in the size of the database +

Efficiently adapt under updates Match two theoretical lower bounds




Revisiting Reuse in Main Memory Database Systems

Opt & MainMem

Kayhan Dursun, Carsten Binnig, Ugur Cetintemel, Tim Kraska (Brown)

HOW REUSE IS DONE TODAY ?

o_okey=l1 okey

"o

o_odate BETWEEN [1993,1997]

| materialize tuples
orders into in-memory tables

MmEEEEY S M-

id, odate

1, 1993

2,1994

3, 1995

EXPENSIVE MATERIALIZATION COSTS

THESE MAY NOT PAY OFFT IN THE FUTURE

IF YOU WOULD LIKE TO SEE HOW WE GET REUSE FOR
FREE, PLEASE COME AND SEE MY TALK ©




Teaser Talks
(Second Part)



* Pufferfish Privacy Mechanisms for Correlated Data FIESY

Shuang Song, Yizhen Wang, Kamalika Chaudhuri (UCSD)

Sensitive Data with Correlation Our Contribution

e a general privacy-preserving mechanism
for any Pufferfish privacy framework — the
I i Il ool Wasserstein Mechanism
L e e a mechanism when the correlation is
described by a Bayesian network — the
Markov Quilt Mechanism

Challenge: e an efficient implementation when the

DP does not hide sensitive information  correlation is described by a Markov chain
about individual records in the

presence of correlations.

e experiments on real data-sets




Differentially Private Stochastic Gradient Descent | Privacy
for in-RDBMS Analytics

Xi Wu and others (U. Wisconsin-Madison)

Better differentially private Stochastic Gradient Descent (SGD).
o SGD is a popular optimization algorithm for machine learning.
o Differential privacy is the de facto standard for formalizing privacy.

Improve private SGD on the following aspects simultaneously:
Easier to implement: “Bolt on” with an existing implementation.
Run faster,

Better convergence/accuracy and

Support a stronger privacy model.

O O O O

Essence behind the “all-win” improvements: A novel analysis of the L2-sensitivity of SGD.




* Pythia: Data Dependent Differentially Private Algorithm Selection

Privacy

los Kotsogiannis, Ashwin Machanavajjhala, Gerome Miklau, Michael Hay

f e )
Algorithm Selection... ...Without Data Access
e Private evaluation of task T e No clear winner in A_ for all instances of T
Algorithms A_ suitable for T
Y B ' SUlEabIe S e Running all algorithms violates privacy
e Choose A'e A toanswerT
4 A 4
Laplace D Lapllaacg el - - )
Dawa Privelet il AHIrDI\'/'e; ] Pyth =
AHP ..?7??
Q% e End-to-end privacy
) e Chooses the right
- algorithm
I AV . )




* Utility Cost of Formal Privacy for Releasing | Privacy

National Employer-Employee Statistics
S Haney, A Machanavaijjhala, J Abowd, M Graham, M Kutzbach, L Vilhuber

A
P?
&

US Law: Pufferfish DP-like Noisy

=

Title 13 ~ Privacy . Privacy _  Employer
Section 9 Requirements Definition Statistics

Comparable or lower evvor than current non-private methods

Duke Census

UNIVERSITY coassssss—— Bureau

Cornell University




Cleaning

Online Deduplication for Databases

Lianghong Xu (CMU); Andy Pavilo (CMU);
Sudipta Sengupta (Microsoft Research); Gregory Ganger (CMU)

. mongoD




QFix: Diagnosing errors through query histories

Cleaning

Xiaolan Wang, Alexandra Meliou (U. Massachusetts Amherst) &

Eugene Wu (Columbia U.)

INSERT
DELETE
UPDATE

\_

/ QFix: Fixing bad queries for dynamic DBMS \

Find & fix errors in query histories.

Q

N | o — B

Queries Change Database /

Traditional Data Cleaning

Find & fix errors
directly on current db

|

|

|

|

: /\
l }/
| -

|

|

\

D

Static Database

‘_________’




7 UGuide — User-Guided Discovery of FD-Detectable Errors Cleaning
S. Thirumuruganathan, L. Berti-Equille, M. Ouzzani, J. Quiane-Ruiz, N. Tang (HBKU)
Ideally!

What you really need!

Pick best question

Dirty Data Candidate FDs H
and violations

Mine AFDs Update Candidate set




SLiMFast: Guaranteed Results for Data Fusion | “leaning
and Source Reliability
Theo Rekatsinas; Manas Joglekar; Hector Garcia-Molina;
Aditya Parameswaran; Christopher Ré

Problem: Clean inaccurate, conflicting data and find hoax sources!
SLiMFast: New ML data fusion framework; subsumes and generalizes
most existing models; theoretical guarantees on the quality of its output.

Fact value reported

What Queen Elizabeth Just Did For . =
e e Use features to describe 2 e i s A
of the Article . . 20 =
- . SoOUrces and fix inaccurate  FEE (5 LR, Mmoce
: I . 80 o : t
(== . ..-= datatwice more accurately! Se 5{ : T
& - subjectivity = 0.640 e o c O_
y - # of misspelled words -E E g Unknown
TextiQuallty: - # of grammatical errors 1 1 3"
In most cases, Logistic S8 ) true value
Web Traffic 80.40% EXITY e H H f a fact
e Regression is enough to o V of a fac
solve data fusion! O




Crowdsourced Top-k Queries Crowdsourcing

by Confidence-Aware Pairwise Judgments

Ngai Meng KOU", Yan LI', Hao WANG?, Leong Hou U", Zhiguo GONG'
"University of Macau, 2Nanjing University

Problem: find the top-k items from a set of computationally challenging items.

) e . 2016 Biggest
Ul of microtask: pairwise comparison. e8es

Disappointment

IMDb 14th IMDb 1st Golden Schmoes IMDb 1st
What’s new? Forrest Gump The Shawshank Batman v Superman: The Shawshank

Redemption Dawn of Justice Redemption
Previous work: the budget for every pair is constant i ‘

and the query processing is not confidence-aware. Bué.l%‘é‘s
orrest
Ours: the budget for a pair is dynamically decided 2 Cimp

by the hardness with confidence.

Pairwise Preference Judgments Preference Distribution H ARD | E ASY
true preference
@ I @ with high probability Needs more budget Needs less budget
[ N R ] .
Q. “3 m@ Then, how to design a method
@ @ (neutral) interval that optimizes cost and latency

with quality guarantee?




L3 Falcon: Scaling Up Hands-Off Crowdsourced

Crowdsourcing

Entity Matching to Build Cloud Services
Sanjib Das’, Paul Suganthan G. C.", AnHai Doan’, Jeff Naughton®, Ganesh Krishnan®,
Esteban Arcaute®, Rohit Deep®, Vijay Raghavendra®, Youngchoon Park**
*University of Wisconsin-Madison, *WalmartLabs, **Johnson Controls

Table A Table B
Name City |State Name City |State
Dave Smith | Madison | WI [~ 1. /i4 . Smith | Madison | Wi
Joe Wilson | San Jose | CA .
P Paniet V- | Middieton | wi
Dan Smith | Middleton| WI

)

'

Challenge: Scale up EM workflow

- DAG involving rules, ML, crowdsourcing

- Use crowd time to mask machine time

-

Domain scientists
@ UW-Madison

A Crowd workers

I ¥ ¥ §

. Ogigt
®.: ' '

Results

Matches tables of 1M - 2.5M tuples, $54-66, 2-14 hours
Deployed as a cloud service at CloudMatcher.io

Used extensively at several organizations

e.g., UW Depts., Johnson Controls, WalmartLabs, etc.

Talk@Session 28, Buckingham (Thur 14:00-15:40)




& CrowdDQS: Dynamic Question Selection in Crowdsourcing

Crowdsourcing Systems
Asif R. Khan & Hector Garcia-Molina (Stanford)

o= PR T

T
Requester ——
S — amazon mechanlcal turk

/;rowdDQS Crowdworkers
Ser\/‘er \_/

Q

Predicted e CrowdDQS dynamically chooses questions in real

Answers time

e Automatically learns worker accuracies and
blocks spammers

e Deployed to 1000s of workers on AMT

e Can reduce costs up to 6x




CDB: A Crowd-Powered Database System

I Crowdsourcing

Guoliang Li and others (Tsinghua U.)

CQL Parser i Result Collection
[ Graph—Baaed Query Model
""éagsg'agt;a;ggéiaa """""" MetaData
Cost Control | Task ] f
Latency Control P !
i = ] ) Worker ] i

Quality Control

Task Assignment Truth Inference |

. Crowd UI Daaignaz

\ Statistics
s
Crowdsourcing i . Relational -
Platforms i

Database

Graph-based Tuple-level Optimization Model
e Tree Model: 15 questions
e Graph Model: 3 questions
Multi-Goal Optimization(Cost, Quality, Latency)

Table 1

Table 2 Table 3 Table 4




I Space & Multidim

Scaling Locally Linear Embedding

Yasuhiro Fujiwara and others (NTT Communication Science Laboratories)

LLE reduces the dimensionality of dataset

1 By~ o,
Step1 k-NN graph o) &|
Step2 Edge weight by regression T | N |
Step3 Eigen decomposition of (I-W)AT (I-W) N ol SO e

We reduce the computation cost as follows:

107 Up to 560,330, and 260 times
. Share nearest 'I:"PP'“E5? :: faster man previous methods
1. used common nearest neighbors |negnors 10° Rty —
.. . 4] : wtos LLL :q—_ i Ripple is scalable
- Efficiently find k-NN . e | ongnal meml] | i oo G
L] = 10 Ay /"
. x Uptozauu A i
- Incrementally compute edge weight 0 o £ 100 imes faster | B HEH | T /
e : v |
2. LU decomposition I-WyTa-w)=UTFw | ;Ld;
pl (]

- Efficiently compute Eigen decomposition d T g P e B o e e
- Low memory consumption where a._y = UTh,b = UTH', b' = Lb",b" = Ua,




Dynamic Density Based Clustering Space & Multidim

Junhao Gan and Yufei Tao (U of Queensland)

New Query: A cluster-group-by query is given a set @ of data
points, and groups the points of @ by the clusters they belong to.

®
o* oo’ Contributions:
& Data structures with fast
. o update and query time.
70 %
"y o=

Lower bounds when such
For @ = {q1, 94, G5}, answer: {g1qa,qs}. structures do not exist.
For @ = {91, 92, qa}, answer: {q1,q4},{q2}.




Space & Multidim

Extracting Top-K Insights from Multi-Dimensional Data
Bo Tang (PolyU); Shi Han (MSR); Man Lung Yiu (PolyU); Rui Ding (MSR); Dongmei Zhang (MSR)

. ) Mining Deep Insights against hierarchical meta cube
Deep |nS|ghtS has been a SUb branCh E.g., Brand F’s rank, (across all brands) w.r.t. YOY increase,

project of the Auto Insights research of has arising trend

framework at Microsoft Research #1 #1

] . = #6)_----"" 2
Auto Insights has been continuously o (A8 __ -2

Ok
-100k

shipping new techniques (e.g., Quick
Insights, Scoped Insights, etc.) to sy -+ Sy s .

o "/ Brand F’s rank; w.r.t. YOY increase, in

Microsoft Power Bl since Dec 2015, // BT
Boeney I In 2014, Brand Fs YOY m'cr'éasez of sales,

. / P /,/ .—.4/// 4..;/’// =
i i H &8 £ % 4 / 3 ¥ : 1
a S e n a b | I n g te C h n I q u es fo r Iea d I ng t e (Rank,an;j (,;:,,,;/ ///////// is outstanding No.1 across all brands
[ e ses. Basic Insights, e.g.,
i S PR, ”:”“,/ ///, e /Z/'/ e aﬂgr::;g;sss:lis: has a decreasing
the Bl & Analytics market o L ST
Level-1 Cubeg, — L =

t & = (I,Sales)

Level-0 Raw Data —— =~

sales; has a rising trend over years

Y




6% QUILTS: Multidimensional Data Partitioning

Space & Multidim

Framework Based on Query-Aware and Skew-Tolerant Space-Filling Curves
Shoji Nishimura (NEC) & Haruo Yokota (Tokyo Institute of Technology)

Problem:
The optimal curve for the target query pattern

Square Query Elongate Rect. Query
3775373 —)
Z-Curve | C-Curve (Composite Index)

[ ]
|

Intermediate Query?  Multiple Queries?

Contributions:
*Cohesion-based Cost Model
*Measure curve property for

query pattern and data distribution

*Curve Design Method

*Heuristics to design effective curves

in terms of the cost model

Cohesion-based
Input Cost Model

Query Patterns ‘

TTTTT
1 L1])]

|

1] e Curve Design i-,-'-'-::'-:'“/""i

Output

Designed Curves




Leveraging Re-costing for Online Optimization Opt & MainMem

of Parameterized Queries with Guarantees

Anshuman Dutt, Vivek Narasayya and Surajit Chaudhuri (Microsoft Research)

Parameterized query

Select attributes
From relations

[ Problem: online version of parametric query optimization (PQO) ]

Where join predicates and Performance Trade-off
other predicates and @ Simple techniques
i_current_price < @Paraml and Optimize Once & Prior techniques
cs_sales_price < @Param2 Worst 6 _ A
A\ Our technique
[@Paraml =10, @Param2 =15]
N
[Many different query instances may lead Optimize
to same optimal execution plan ‘ Alwa
ys
’ Best A -
[ Opportunity: to avoid optimizer overhead Low  Optimizer overhead High

J




) Handling Environments in a Nested Relational Algebra | ©pt& MainMem
with Combinators and an Implementation in a Verified Query Compiler
Joshua Auerbach and others (IBM Research)

Handling Environments: Verified Query Compiler:
e Keep Variables: simple plans, complex rewrites Q*cert

. . . https://querycert.github.io/
e Remove Variables: simple rewrites, complex plans

/ Java

Nested Relational Algebra with Combinators: |
—»JavaScript

e NRAEnv = NRA Combinators + Environment
e Definition, Expressivity, Rewrites, Applications

Implementation: NRAEnv
e Written with Coq Proof Assistant
e Algebraic Optimizer Verified Correct
e Q¥cert demo at SIGMOD 2017




20

4 renscre From In-Place Updates to In-Place Appends: | ©pt & MainMem
W& omwemor  Ravyisiting Out-of-Place Updates on Flash
AINF s Hardock’, I Petrov*, R. Gottstein” and A. Buchmann’

Hochschule Reu..:tlin;;en (*TU Darmstadt, +Reut|ingen Un|VerS|ty)

Transrcuon e Small updates —
s write-amplification 600x
| Bl &<
| &
l & a Approach:
N4 4OK|03) :‘% & e Small updates —
10..100 Bytes| © © . L
ot Data § ks physical in-place appends

IPA: Flash updates without a prior erase
osiab | B DVS



