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From Disk to Main Memory w»mes"e” Database

...In ancient times ...10 years back ..today?

Processor Processor
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From Disk to Main Memory w»mes"e” Database

P rO C e S S O r . . % 8 pezrcent degradation/bit/generation
_ Intrinsically hard to further & /
Y increase DRAM's density £ =
Server Memor RN
DRAM . Tei?‘moﬁ)sgy nisde (gﬁ'l) =i
DRAM DIMM Prices (USD)
DB (main data) Cost per GB does not scale 7 .
- 9,5x price for 4x capacity /I
I |
file API Ever-increasing need for

Importance of Memory in Power

more main memory

Core count increasing =
faster than DIMM capacity - [

Performance mat
Server

-_
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Power Consumption ’-'.!.\ 20% 26% 2%
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DRAM is hitting its scalability limits EE
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NVRAM for Database Systems? WQDVGS"G” Patabase
1) Price Cheaper than DRAM???

Higher capacity (3 TB per socket for

2) Capacity/error _ .
first-gen 3D XPoint)

3) Energy consumption Significantly more energy efficient
4) Non-volatile May serve as disk replacement
5) Byte adressable Directly work on persistent version
6) Higher/asymmetric latency Writes noticeably slower than reads

NVRAM as a promising technology




NVRAM as Transient Main Memory w»m“de” Patabase

DRAM as hardware-managed
cache for NVRAM

Application Application N

- ~
- ~ . - ~
~ - ~
- ~ — ~

application - - application -
address space [ i address space |

1 1
Vn’tual memory subsy#stem

NVRAM next to DRAM

Virtual memory $ubs:ystem
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| | K
DRAM § NVRAM
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NVRAM as Persistent Main Memory w»m“de” Database

* SNIA recommends to access

application NVRAM via file mmap
address
space . ! ! i load/store; * An NVRAM-optimized filesystem

provides zero-copy mmap,
bypassing the OS page cache

" Virtual memory subsystem |
; T

Buffer

pool - DRAM -

| file API'
Disk filesystem

=

=

Q

p=4
S il by

- Several filesystem proposals:
NOVA, PMES, SCMES, etc.

| file API
NVRAM-optimized filesystem

- Linux ext4 and xfs already
provide Direct Access support

NVRAM may become a universal memory
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NVRAM Performance Implications

Throughput

©

sequential vs. random access pattern
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DRAM as NVRAM cache

Runtime (psec)
o B N W &~ U O ~N

DRAM NVRAM LRU Miss

Balance of DRAM and NVRAM required
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Data Durability

Little control over when data is
persisted

- CPU Cache eviction policy
- Memory reordering

Enforce order & durability of stores
- CLFLUSH, CLFLUSHOPT, CLWB
- MFENCE, SFENCE, LFENCE

- Non-temporal stores (MOVNT)

New primitives are being researched

- e.g., HOPS and its OFENCE and
DFENCE barriers

7
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Persistent
NVRAM Device
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Persistence Primitives w» Dresden Database

Persistence Behavior Ordering Constraints
Primitive

CLFLUSH evicts a cache line and writes  Ordered with writes = contains implicit preceding and
its content to memory succeeding fences
CLFLUSHOPT evicts a cache line and writes  Ordered with SFENCE but not with writes. Enables better
its content to memory concurrency.
CLWB writes back a cache line Ordered with SFENCE but not with writes. Enables better
without invalidating it concurrency.

MOVNT write that bypasses the cache  NT writes can be reordered. Ordered with SFENCE, which
drains NT writes from the store buffer directly to memory

SFENCE all preceding store instructions have been executed
MFENCE all preceding load and store instructions have been executed
LFENCE all preceding load instructions have been executed

R Source: Intel® 64 and |A-32 architectures software developer’'s manual
@ s 12



https://software.intel.com/en-us/articles/intel-sdm

Data Durability w» Dresden Database

Ensure preceding writes

/ CPU \

made it to the store buffer /“4(3:’ core || Core "}O\m
- guarantee that the latest \itore Buffer Store Buffer
data is flushed N L1 L1

_ R AN .
N

SFENCE + CLWB + SFENCE L3 /

/

Ensure CLWB
finishes executing

NVRAM Controller

NVRAM Device
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SFENCE

N

Ensure the NT
store buffer is

drained to
NVRAM
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Data Durability: Example WQDresden Database
Simplified array append operation

void push_back(int val){

m_array[m size] = val; What is in NVRAM after the insertion?
sfence(); % m_size m_array

clwb(&m_array[m _size]); 0 x
sfence();

m_size++;« ! xCorrupt!

sfence(); j( 3 017

clwb(&m_size); - x
sfence(); 1 (
}

myArray.push_back(2017);

Need to enforce write ordering and durability at cache-line granularity
) fivses 14




Partial Writes

p-atomic store - executes in a one CPU cycle

y/
W§ Dresden Database
o Systems Group

Persist = sfence + clwb + sfence

Currently only 8-Byte stores are p-atomic on Intel x86

estr‘cpy(ptr‘, “SIGMOD Tutorial”);
persist(ptr, 15);

flag = true;

persist(&flag);

CL1

S

O

r

Cache

cL2|ilall

What is in NVRAM?

1.

2."SIGM”

3."SIGMOD T

4."SIGMOD Tutor”

5."SIGMOD Tutorial”
6."\O\O\O\O\O\O\O\O\O\0\0\Oial"

N CL2 evicted before CL1, e.g., due to a context switch

Need software-built p-atomicity for writes > 8 bytes
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Persistent Memory Leaks w» oresden Database

New class of memory leaks resulting from failures
Example: crash during a linked-list insertion

void append(int val){

Persistent allocation
node *newNode = new node()"”’//*

J

newNode->value = val; m tail

persist(&(newNode->value));
5m_tail->next = newNode; E[ Failure-induced

¥

persist(m tail); ’I persistent
m tail = newNode; m_tail memory leak!

List.append(9);

TECHNISCHE
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Avoiding memory leaks is a requirement
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Data

-
-

A
Recove ry w» gsfgnigreog Database
Application

-

~~. Address space lost upon restart

Application - —> stored virtual pointers become invalid

address space

Filesystem provides a naming scheme

One file per object not realistic
- How to recover objects?

Need persistent, recoverable NVRAM addressing scheme
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Testing of NVRAM-Based Software w»m“de” Database

Traditional storage media  __--- e |
accessed via DRAM > = - NVRAM directly exposed

D . <k application to the user space -
ata corruption risks address space more corruption risks
minimized

| 1 load/store
|

Virtual memory subsysiem : , ,
! ! Dangling pointer -
mmap() | persistent data corruption

NVRAM-optimizec
Missing or misplaced
persistence primitives;

wrong store order, etc.
Need testing and validation tools for NVRAM-based software

Corruption happens first
in DRAM - catch the
corruption before it
propagates to disk

TECHNISCHE
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NVRAM programming challenges
»Data durability

» Partial writes

» Persistent memory leaks

»Data recovery

» Testing of NVRAM-based software

Need new programming models that address these challenges

EEEEEEEEEE
UNIVERSITAT
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NVRAM Programming Models

We look at the following NVRAM
programming challenges:

1.

How to provide a recoverable
addressing scheme?

How to avoid persistent memory
leaks?

How to ensure data con5|stency7

V/
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Application

~
S~
-~

application
address space .

NVRAM library




Recoverable Addressing Scheme

Two alternatives
= Fixed-address memory-mapping Offset
Persistent pointer = virtual pointer

» Unrestricted memory-mapping

Dresden Database

Systems Group

Persistent pointer - file ID + offset

Volatile pointer = File start address + Offset

Program root
Start address at known offset
()]
Q
(40
— O
© U
2w
= v
> 0
O
1 ) S
I ! <
| (mmap) |
i !
! I
: S
<C
o’
>
=
22

TECHNISCHE
@ UNIVERSITAT
DRESDEN




Recoverable Addressing Scheme w»mes"e” Patabase

Fixed-address memory-mapping Unrestricted memory-mapping
Pros: Pros:

- Familiar interface - Safe, easy-to-implement, and
- No runtime overhead portable approach

Cons: Cons:

- Fixed address is a security issue - Potential overhead for

- Can unmap existing mappings converting to regular pointer

Unrestricted memory-mapping the safest way to go

EEEEEEEEEE
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Preventing Memory Leaks w» Dresden Database

—> Traditional interface has a "blind spot”

Three alternatives
» Reference passing
- allocate(PPtr &pptr, size t allocSize)
pptr is owned by the data structure

= Transactional logging
- Wrap operation involving allocation within fail-atomic transaction
BEGIN TX {pptr = allocate(size); persist(&pptr);} END TX

» Offline garbage collection
- Scan allocated blocks upon recovery to detect memory leaks

EEEEEEEEEE
UNIVERSITAT
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Preventing Memory Leaks w» Dresden Database

Reference Transactional Offline Garbage
Passing Logging Collection
Pros: Pros: Pros:
- Explicit memory - Data structure canbe - Catch existing memory
management leak-oblivious leaks upon restart
- No runtime overhead - No runtime overhead
Cons: Cons: Cons:
- Data structure must be - Runtime overhead due - Restricts programming
aware of memory leaks to write-ahead log language

- Slow recovery

Reference passing closer to becoming the standard

EEEEEEEEEE
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Consistency Handling w» Dresden Database

Transactional Model Lightweight Primitives

Provide durable transaction semantics  Provide basic functionality, e.g., memory

for NVRAM programming allocation, leak avoidance etc.
void push_back(int val){ void push_back(int val){
TXBEGIN { m_array[m size] = val;
m_array[m_size] = val; persist(&m_array[m_size]);
m_size++; m_size++;
} TXEND persist(&m_size);
} }
At least 4 writes Only 2 writes

EEEEEEEEEE
UNIVERSITAT
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Consistency Handling w» Dresden Database

Transactional Model Lightweight Primitives
Pros: Pros:
- Easy to use and to reason about - Low-level optimizations possible
Cons: Cons:
- Overhead due to systematic logging - Programmer must reason about
- Low-level optimizations not possible the application state

- Harder to use and error prone

High Performance - Lightweight Primitives

EEEEEEEEEE
UNIVERSITAT
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Existing NVRAM Libraries w»mesden Database

PPtr = Persistent Pointer

Approach Consistency Addressing Scheme Leak Prevention Compiler Source
Handling support

Mnemosyne Transactional & PPtr: file offset Reference passing | ASPLOS11
Lightweight primitives = Recovery: new mmap in  Transactional logging
reserved address space

NV-Heaps Transactional PPtr: file Id + offset Transactional logging No ASPLOS11
Recovery: new mmap
Intel NVML  Transactional & PPtr: file Id + offset Reference passing | No http://pmem.io/
Lightweight primitives ~ Recovery: new mmap Transactional logging
Atlas Transactional (sections  PPtr: volatile pointer Transactional logging Yes OOPSLA14
determined by locks) Recovery: fixed mmap
REWIND Transactional Undefined, hints > Transactional logging Yes VLDB'15

PPtr: volatile pointer
Recovery: fixed mmap

PAllocator Lightweight primitives  PPtr: file Id + offset Reference passing No To appear
Recovery: new mmap

Recommended starting point: NVML - rich, open source, actively developed
() Beseeese 28
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http://pmem.io/
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K N\ Dresden Database

Persistent Memory Allocation for NVRAM w

We explore the following design dimensions

Allocation strategies

Pool structure (single file vs. multiple files)
Concurrency Handling

Garbage collection

Persistent Fragmentation

Summary of existing persistent memory allocators

We assume wear-leveling will be handled by hardware

31
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Allocation Strategies TV @ Dissicn Database

Systems Group

Three main strategies

- One file per allocation

- Segregated-fit for small blocks (e.g., < 4 KB)

- Best-fit for medium and large blocks (e.g.,, [4 KB, 16 MB))

One file per allocation not realistic...  except for huge blocks!
= Significant overhead and wasted - Fragmentation handling
memory for small blocks pushed to filesystem

= Filesystem might struggle to
handle huge number of files

EEEEEEEEEE
UNIVERSITAT
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Segregated-Fit Allocation Strategy WQ Dresden Database

Fixed-size memory chunk, e.g., 8 KB, divided into fixed-size blocks

Bitmap 1@1@11 < Header

One allocation == one bit flip!

Header

Header

Allocated block
Free block <«

Multiple class sizes

Reduced fragmentation with moderate number of class sizes
Not suitable for larger block allocations

EEEEEEEEEE
UNIVERSITAT
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Best-Fit Allocation Strategy WQ Dresden Database

Allocate multiple of a predetermined size (e.g., system page size)

. Free blocks index Allocated
Allocation sorted by block size A
Allocated
- Global block index
Coalescin
"9 Sorted by block offset A Allocated
Allocated
Indexes can be transient and rebuilt _
during recovery Persistent memory pool
—> Suitable for large block allocation - Prone to fragmentation

EEEEEEEEEE
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Pool Structure: Single File Vs. Multiple Files WQDVGS"G” Patabase

Pros

» 8-byte persistent pointers possible

Pool as Single File

= Easier to implement

Cons

= Hard to shrink

= Huge block allocation a problem
» Segregated-fit allocator must use
best-fit allocator to create chunks

Pool as Multiple File

Pros

= Easier to grow and shrink

» Segregated-fit allocator can have
dedicated files

= Easy, fragmentation-free huge
allocation handling

Cons
= 16-byte persistent pointers

Multiple files better suited for database systems

35




Concurrency Hand“ng w» Dresden Database

Systems Group

Thread-local allocation —— One allocator object per thread

The standard in general-purpose allocators

Used for small block allocations
- Local allocator requests chunks from global pool

Need to be merged with global pool when thread terminates

Does not scale under high concurrency
- Frequent chunk requests to the global pool

36



Concurrency Handling w»mesden Database

Core-local allocation — One allocator object per physical core

= Used in large-main-memory systems for both small and large blocks
—> Local allocators request large files from global pool

= Robust performance under high concurrency
—> Stable local allocators - Greedy

Socket 1 Socket 1

C1 C2 C1 C2

Core-local allocators better suited for database systems

TECHNISCHE
UNIVERSITAT
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A
Thread-local vs. Core-local SAPE > Lilaac

16 KB Allocation Performance
90 Intel® Xeon® CPU X5550 @ 2.67GHz (16 cores)
80
70
60
— 50
£ 40
30
20
10

——tcmalloc
——core-local

——jemalloc

1 2 3 4 5 6 7 8 9 10 16 32 64 128 256 512

#Threads Courtesy of Daniel Egenolf and Daniel Booss

TECHNISCHE
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Garbage Collection w» Dresden Database

] NV-Heaps: Making Persistent Objects Fast and Safe with
Reference counting Next-Generation, Non-Volatile Memories. ASPLOS'11

Deallocation calls the destructor, which might trigger recursive deallocations
- Need to ensure fail-atomicity of recursive deallocations

Makalu: Fast Recoverable Allocation of Non-volatile Memory.

Offline garbage collection OOPSLA16

1. Scan program object layout
2. Mark reachable blocks
3. Sweep unreached blocks

Catch memory leaks that stem
from programming errors

Relax metadata persistence constraints = faster small-block allocations

Programming language constraints (e.g., no generic pointers)

Slow Recovery
) fivses 39
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Persistent Fragmentation w» phaden Database

Restart is a last resort, but valid way of defragmenting volatile memory
- does not apply to NVRAM

File system solutions do not apply to NVRAM
- File systems benefit from an additional indirection layer
- NVRAM is directly accessed with load/store instructions

Need new defragmentation mechanisms

EEEEEEEEEE
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Defragmentation

Most file systems have support for sparse files

Defragmentation idea: Punch holes in free blocks

lterate until target size reached

—

Find largest
free block

N\

Dresden Database

Vo
K
o Systems Group

—)

Punch hole using
fallocate

Used Hole \
Used Free
Hole Used

Must keep file size unchanged to maintain validity of offsets

41



Existing Persistent Memory Allocators w»mes"e” Patabase

Allocator Purpose Pool Allocation Concurrency Garbage Defragm- Source
structure strategies handling collection entation

Mnemosyne  General Multiple Segregated-fit Thread-local ASPLOS'11
files + best-fit for small blocks
NV-Heaps General  Single file Undefined Thread-local Yes No ASPLOS11
nvm_malloc  General Single file  Segregated-fit Thread-local No No ADMS'15
+ best-fit for small blocks
NVML General  Single file  Segregated-fit Thread-local No No http://pme
+ best-fit for small blocks m.io/nvml/
Makalu General  Single file  Segregated-fit Thread-local Yes No OOPSLA'16
+ best-fit for small blocks (offline)
PAllocator Large Multiple Segregated-fit Core-local No Yes To appear
systems files + best-fit + file

For completeness: NVMalloc and Walloc focus on wear-leveling

Salient differences in design decisions

TECHNISCHE
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http://pmem.io/nvml/
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K N\ Dresden Database

Discussion: Operating System Challenges w

»Address space fragmentation
- Only 128 Tbytes of virtual address space
- NVRAM will push main memory capacity beyond 100 Tbytes

Newly extended to 128 Petabytes on Linux!

»Page Table (lack of) scalability
- Memory mapping millions of files upon startup a challenge
- Slow memory reclamation upon process termination

EEEEEEEEEE
UNIVERSITAT
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Duration of Process Termination w»[”“de” Database

Total time in minutes
= = N N
@) o @) O U

O

mmap, touch, kill
1152 cores 32-socket 16 TByte RAM E7-8890 v3

1 2 3 4 5 9 10 11 12 13 14 15
TBytes of memory used

Courtesy of Robert Kettler and Daniel Booss
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Data Structure Design for NVRAM w»mes"e” Database

NVML includes many examples of data structure implementations
- Linked-list, Hash table, B-Tree, KV Store

Literature focuses mostly on tree-based data structures

- Fail-atomic updates
- Reduce NVRAM writes

Overview

CDDS-Tree wB-Tree NV-Tree FPTree HiKV
(FAST'11) . o51s) 4 (FAST'15) =) (SIGMOD'16) 4 (ATC'17)

46



Consistent and Durable Data Structures for
Non-Volatile Byte-Addressable Memory. FasT11

Use versioning to achieve p-atomicity

Key

[start, end)

5

[2,4)

20
[3,4)

Dresden Database
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13 20 Live entry
= o  Dead entry_
Dead entry
5 20 99 | Insert 40
2-) | [3-) | [L-) | (4,-)
5 20 40 99
[1,4) [4,-) [4,-) [4,-) [4,-)

1. Set end timestamp

of leaf entries

2. Create two new leaf nodes
3. P-atomically increment global timestamp

47



Consistent and Durable Data Structures for w%\ Dresden Database
Non-Volatile Byte-Addressable Memory. rFasT11 ‘ » pystems Grovp

Live entr
Key 00 BT € entry
0 99 99 10 1 20 | 99
/ Y 4,6 6,-) | [6,-) | [6,-)
0 0 0 99 40 | 99 5 8 10 13 20
4 : 4 i [4,-) | [4,-) 6,-) | [7,-) | 16,-) (9,-) [6,-)

Recovery = undo operations based on global timestamp

Need garbage collection

Global timestamp counter is a contention point
48
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Rethinking Database Algorithms for Phase Change
Memory. cipr11

Sorted leaf

Counter
\
1. 3 7 |14
b | c
—_—
2. 3 7 |14
b | c
3. 3 5|7 |14
d| b |c
y
4. 4 517 |14
d| b |c

TECHNISCHE
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But...slower, sequential scan!

| Potential
corruption

I Writes slower
than reads

Vo
m Dresden Database
o Systems Group

Unsorted leaf

1 e Bitmap
) 7 114]12 |10
e| f|l gl|h
2.
p-atomic

p-atomicity + decreased
number of writes

49



Persistent B+-Trees in Non-Volatile Main Memory. W6 Dresden Database

VLDB 2015 Systems Group

One byte per slot entry

Indirection slot array = enable binary search

e| f|lg]|h
One bit reserved for
slot array consistency
(31112 e
Slot array can be p-atomically updated up to 8 entries . 1*21*024
- We can do away with the bitmap N

TECHNISCHE
UNIVERSITAT
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Insertion with Bitmap and Indirection Array w»f’fesden Database

[311]2 ][] (3] 1]2 [F=2]
7 1121 10] 14 ' 17 | 12| 10| 14
e| flg|h d| flg|lh

Find free slot and insert the record

Lofs]1]2] Lofsl1l2]
: vl i P
7  emembesbebe 4 i
17 12| 10| 14 5112 10| 14
d| f|gl|h d| flgl|h
Flag slot array as p-atomically set both new
invalid, then update it record and slot array as valid

Bitmap must be <= 8 bytes
@ s 51




A
Out-of-Place Updates TV @ Dissicn Database

(s11]2 ENENEE KN
| e— D, e————— 3, ek
7 12|10 14 12| 12| 10| 14 12|12 | 10| 14
e| f| g|h k| f|lgl|h k| f|lgl|h
Update Find free slot and update p-atomically flip validity of
(12, f) =2 (12, k) record out-of-place both old and new records

TECHNISCHE
UNIVERSITAT
@ DRESDEN 52



NV-Tree: Reducing Consistency Cost for w/\ Dresden Database
NVM-based Single-Level Systems. FasT15 g » Systems Group

Consistency of inner
nodes relaxed

N28 N29 N30

Selective consistency

- Simpler algorithms - Less writes to NVRAM

Expensive rebuild of inner nodes when one last-level node is full
- Cannot handle skew = Large memory consumption

TECHNISCHE
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NV-Tree: Reducing Consistency Cost for w/\ Dresden Database
NVM-based Single-Level Systems. FasT15 g » Systems Group

Append-only leaf nodes Record - [flag(-/+), key, value]

size 0l (+5) | (+.22) | (-5) am nserts

(+5) [ (+.22)] (-5 [ (+.5) (+5) | (+.22) | -5 | +.5)

1. Append new record with + flag 2. p-atomically increment counter

Unsorted leaf nodes - expensive linear scan

EEEEEEEEEE
UNIVERSITAT
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FPTree: A Hybrid SCM-DRAM Persistent and o
Concurrent B-Tree for Storage Class Memory. WQ e o a0AS

SIGMOD'16 e e e — —————————
| Volatile (DRAM) |
| | 2 5 7 |
Inner nodes in DRAM : :
for better | A/I\A |
| I
performance | 1 2 2 4 5 6 7 |
(~1-3% of data) | :
I O\

Leaves in NVRAMto | Nl .NPY .IE3 I 113 13 %2
ensure durability |

|
| Persistent (NVRAM) |

Recovery is up to 100x faster than a full rebuild




Leaf Node Layout

A fingerprint is a 1-byte hash of a key

fingerprints
a /E N\

Dresden Database
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K
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bitmap

pNext

KV={(k1,01)...(kn,vn)}

lock

h.

4

optimally one-Cache-line-sized

Fingerprints limit the number of key probes

56
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Fingerprinting w» Dresden Database

256
128
64

<« [ Inear search

<«— Binary search

Expected number of
in-leaf key probes
—t
(@)

<+«— Fingerprinting
4 8 16 32 64 128256
Number of leaf entries m
Fingerprinting limits the number of probed keys to one
for leaf sizes up to 512 entries

Range scan still requires full leaf scans
@D s 57




Systems Group

Hardware Transactional Memory W§ Dresden Database

Allows optimistic execution of critical sections

Time Thread 1 Thread 2 L1 Cache ,

Transactions keep read

XBEGIN p— and write sets in L1

cache
recen critical \CLFLUSH > Abort!
: ort!
YEND section
XEND
v

There is an apparent incompatibility between HTM and NVRAM
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Selective Concurrency w» Dresden Database
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Selective Concurrency: Insertion

— — — — — — — — — — — — — — — — —

' Transient l

I
I
1 3 4 I
e
1 2 3 4 I
I

ﬂ?ﬁ |
B-B-E-5-
I

I

Persistent ]

r

L

Vo
m Dresden Database
o Systems Group

1. Find and | 2. Modify | 3. Update | 4. Unlock
lock leaf leaf parents leaf
XBEGIN

CLFLUSH  XEND

XBEGIN
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Persistent Data Structures: Summary w»mes"e” Database

Achieving p-atomicity Reduce NVRAM accesses

= \ersioning = Selective persistence
= Append-only * Indirection slot array
= Qut-of-place updates P * Fingerprints

(e.g., using bitmaps)

Reduce NVRAM writes Concurrency scheme

» Unsorted leaves » Selective concurrency
= Selective consistency
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HiKV: A Hybrid Index Key-Value Store for W6 Dresden Database

Systems Group

DRAM-NVM Memory Systems. usenix atc17

__________________________ 1T Reused design ideas

= Selective persistence
= Selective concurrency
= Qut-of-place updates

Global
B+-Tree

New design ideas

= Global transient B+-Tree
and partitioned persistent
hash index

Partition N (lock)

Hash Index

= Asynchronous writes to
_________________________ | the global B+-Tree

Fast point queries & Fast range queries

EEEEEEEEEE
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Discussion w» gsfgnigsg Database

All presented works propose valuable, reusable ideas!
But...some are...

=  Oblivious to failure-induced memory leaks
= Do not use a recoverable addressing scheme
= Mix concurrency atomicity with p-atomicity

Using a sound programming model is a must
to move to building more complex systems

EEEEEEEEEE
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Tutorial Overview WO

1. Motivation
2. NVRAM Programming Challenges
3. NVRAM Programming Models

Part 2: Data Structure Engineering for NVRAM
1. Persistent Memory Management

2. Data Structure Design

3. Fail-Safety Testing

4. NVRAM Performance Emulation

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Dresden Database

Systems Group
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A
Bug Exampl_e w» sliy)srgns;greog Database

: e L Persist = sfence + clwb + sfence
Simplified array append operation:

array[size] = val;
persist(&array[size]);

i Cache
size++;
persist(&size); Correct code (4| AlB[C[D
ar'r-ay[size] = val: NVRAM
: (4| AlB[C[D

persist(&size);

Missing persist =

EEEEEEEEEE
IIIIIIIII AT
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Valgrind Persistent Memory Extension W§ Dresden Database

. . Systems Group
https://github.com/pmem/valgrind

Experimental effort to catch errors related to persistent memory.

Program must tell Valgrind about persistence primitives
- persistent memory mappings, flushes, fences, etc.

Currently indicates when:

= Writes are not guaranteed to be durable (e.g., missing flush)

= Multiple writes are made to the same location without flushing the first one
» Flushes made to non-dirty cache lines

EEEEEEEEEE
UNIVERSITAT
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https://github.com/pmem/valgrind

Yat: A Validation Framework for Persistent Memory w?\ Dresden Database
Software. usenix aTc14 g » Systerms Grop

Record-and-replay approach

1. Record 2. Replay

Collect write instructions within the ~ Replay trace until next segment

address range of NVRAM delimited by two persist barriers
l End of

: L. segment?
Use virtualization to trace NVRAM

primitives as VMM exits

Apply a possible write reordering
combination within a segment

! !

Check application consistency

EEEEEEEEEE
UNIVERSITAT
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Yat: A Validation Framework for Persistent Memory

Software. usenix aATc'14

Evaluation: Testing PMFES, an NVRAM-optimized filesystem

Dresden Database

Systems Group

pm Segments Combinations Time
Test | write | clflush | barrier | o451 | Thresh. | Total | Thresh. | Total | Thresh.
T1 | 506 | 372 131 | 131 12 15K 4K | 44m | 15m
T2 | 54K | 14K 6K 6K AK | 789M | 1M 5.2y 3d
T3 | 158K | 53K 15K | 14K 6K o 2M o 5d
+ extensive coverage - slow
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On Testing Persistent-Memory-Based Software. W§ Dresden Database

DaMoN 2016 Systems Group

— Simulate power failure

O;ii?eir;al I\/Ilii[g;r Copy-on-Write
Normal ~_ A
Execution Replicate Flushes
Simulated fork recovery test process X D D
- Ch R ry procedure
Eigit?c?n Segrgggt@ss tp Mirre, +eucsoevfdye$i ned tests

+ Fast and automated - Not exhaustive
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Bug Example Revisited w»mesden Database

array[size] = val; o .
size++;* Missing persist

persist(&size);

Cache

alalBlcip

Original File Mirror File

4| ABICID 4l

Mirror files allow to catch missing persist primitives

EEEEEEEEEE
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Memory Reordering w» Dresden Database

Flush

<address, content>

FENCE

ﬂ

Apply a reordering combination

Catch errors resulting from wrongfully unordered flushes

TECHNISCHE
UNIVERSITAT
@ DRESDEN 71




imitati A Dresden Datab
Limitations w» Dresden Database

array[size] = val;
Ssize++; ~ _I] New size might be made
persist(&array[size]); durable before new value

persist(&size);

Cache
(4 A|B[C|D

Original File Mirror File

4 ABIC 3 AalBlC]

Durability reordering of writes cannot be detected
D 72




Testing of Multi-Threaded Programs w»mes"e” Patabase

mutex ml, m2;

if(ml.try_lock()){ ~--.__
ctri+s; 772> Single-threaded execution
persist(&ctrl);  _--

ml.unlock(); _--~

Fedse—iftmi—try—tocitt
==t
—pepsist{&etrl s « Argument should be &ctr2
—r2 Rk

}

Single-threaded fail-safety + concurrency correctness

+
Multi-threaded fail-safety

EEEEEEEEEE
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Summa ry W6 gsfgnigsg Database
» No “free lunch”: aggravated corruption risks

» Exhaustive testing practically infeasible
—> Strong theoretical guarantees are a prerequisite

» Simple testing techniques that cover a wide range of bugs

EEEEEEEEEE
UNIVERSITAT
@ DRESDEN 74




. . /\
Tutorial Overview E’.‘.':70>

Part 2: Data Structure Engineering for NVRAM

4. NVRAM Performance Emulation

Dresden Database
Systems Group
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NUMA-Based NVRAM Emulation T @ Drcsicn Datsbase

Higher latency, lower bandwidth

Socket 1 Socket 2

Bind application m m Memory of
to socket 1 "7‘ m socket 2 as

= numactl emulated NVRAM

= libnuma NVRAM |
How?

Can deactivate QPI links to further increase latency on larger systems

+ Micro-architectural behavior not affected

- Limited latency settings, symmetric latency
@D s 76




Using DRAM as Emulated NVRAM T @ Drcscen Database

Two alternatives

Mount a tmpfs filesystem and bind memory to a specific processor
mount -t tmpfs -o size=1G tmpfs /mnt/pmem
mount -o remount,mpol=bind:1 /mnt/pmem

Reserve a DRAM region at boot time and mount a DAX filesystem on it

memmap=32G!64G kernel parameter = reserve 532G of RAM starting from 64G
mkfs.ext4 /dev/pmemo

mount -o dax /dev/pmem@ /mnt/pmem

Further details: http://pmem.io/2016/02/22/pm-emulation.html
iy 77



http://pmem.io/2016/02/22/pm-emulation.html

Dresden Database

Systems Group

Quartz: A Lightweight Performance Emulator W6

for Persistent Memory Software. middleware2015
https://qgithub.com/HewlettPackard/quartz

Emulates bandwidth by utilizing the DRAM thermal control

Models average application perceived latency
- Inject delays at boundaries of epochs

Epoch duration Delay

o »
» >

a

<«

> lime

Delay = (Stalled cycles / Average latency) X (NRAM latency — DRAM latency)

TECHNISCHE
UNIVERSITAT
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https://github.com/HewlettPackard/quartz

Dresden Database

Systems Group

Quartz: A Lightweight Performance Emulator W6

for Persistent Memory Software. middleware’2015
https://github.com/HewlettPackard/quartz

Socket 1 Socket 2
Can emulate two memory regions: DRAM + NVRAM N 3

- Delays based on remote memory access stalls =1 $A

NVRAM

How to use Quartz?

Preload user-mode library
- Registers threads - manages epochs and injects delays

+ Wide range of latency/bandwidth settings

- Less reliable than NUMA-based emulation, symmetric latency
O s 79



https://github.com/HewlettPackard/quartz

Intel NVRAM Emulation Platform. Subramanya W§ Dresden Database

Systems Gr
R. Dulloor. Systems and Applications for Persistent Memory. PhD Thesis, 2015. e

Emulates bandwidth by utilizing the DRAM thermal control
Increases latency using microcode patch

QPI Link
Socket O < > Socket 1

Memory bus Memory bus

CPU (8 cores) = » CPU (8 cores)

+ Accurate, microcode-based, uses memory bus
- Not widely available, symmetric latency

© s Access through Intel virtual Lab < Requires sponsor from Intel 20




SUIlllllaIy w:) SVSte SGOUD

» Available, easy-to-use NVRAM latency and bandwidth

emulation techniques

= NUMA-based emulation
= Quartz
= |ntel's NVMEP

» Reliable performance emulation

» Limitation
= Symmetric read/write latencies
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Tutorial Wrap Up W§

Part 1: Motivation & Challenges

1. Motivation

2. NVRAM Programming Challenges
3. NVRAM Programming Models

Part 2: Data Structure Engineering for NVRAM
1. Persistent Memory Management

2. Data Structure Design

3. Fail-Safety Testing

4. NVRAM Performance Emulation

Dresden Database
Systems Group

82



TECHNISCHE
IIIIIIIIIII

y/
W§ Dresden Database
o Systems Group

Hands-on session
Room: Buckingham
Tuesday, 4-6 p.m.

Distribute bootable USB drives with Ubuntu 16.04.2
(sponsored by SAP)

Walk through code examples using Intel's NVM Library

Join us and write your first NVRAM data structure!
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References: NVRAM Programming Models w»mes"e” Patabase

Mnemosyne Mnemosyne: Lightweight Persistent Memory. Volos et al. In ASPLOS11

NV-Heaps NV-Heaps: Making Persistent Objects Fast and Safe with Next-Generation, Non-Volatile
Memories. Coburn et al. In ASPLOS11

Intel NVML  Intel NVM Library. http://pmem.io/

Atlas Atlas: Leveraging Locks for Non-volatile Memory Consistency. Chakrabarti et al. In ACM
SIGPLAN Notices 14.

REWIND REWIND: Recovery Write-Ahead System for In-Memory NonVolatile Data-Structures.
Chatzistergiou et al. In VLDB'15.

PAllocator Memory Management Techniques for SCM-Based Database Systems. Oukid et al. VLDB 2017.
To appear.
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References: Persistent Memory Allocators w»m“de” Database

©
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nvm_malloc

NVML

Makalu

NVMalloc

WAIlloc

nvm malloc: Memory Allocation for NVRAM. Schwalb et al. In ADMS@VLDB'15.

Intel NVM Library. http://pmem.io/
Makalu: Fast Recoverable Allocation of Non-volatile Memory. Bhandari et al. In OOPSLA'16.

Consistent, durable, and safe memory management for byte-addressable non volatile main
memory. Moraru et al. In TRIOS™13.

WALlloc: An Efficient Wear-Aware Allocator for Non-Volatile Main Memory. Yu et al. In |EEE
IPCCC15.
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