

Controlling False Discoveries During Interactive Data Exploration

+ ableau

Problem:

Visual analytics & data exploration are prone to false discovery.

Challenge:

Infer hypotheses from visualizations automatically.

Control false discovery interactively with theoretical guarantee.

System:

QUDE: Quantifying Uncertainties in Data Exploration.

Demo: Safe Visual Data Exploration

Session 11, Continental B, 11am.

Z Zhao, L De Stefani, E Zgraggen, C Binnig, E Upfal and T Kraska Computer Science Department, Brown University Peter Bailis; Edward Gan; Samuel Madden; Deepak Narayanan; Kexin Rong; Sahaana Suri

Problem:

Massive fast data streams :: i) relational analytics not enough ii) no ML systems for automatically reducing streams at scale

Solution:

New engine combining streaming classification + explanation This paper: architecture, unsupervised estimation, sketching Exciting results from production and open source use

This is the next major challenge for dataflow-based analytics

Data Canopy: Accelerating Exploratory Statistical Analysis

Repetitive statistics and data access

Data Canopy synthesizes statistics from basic ingredients

Beliefs...

Beta Probabilistic Databases

A Scalable Approach to Belief Updating and Parameter Learning

Niccolo' Meneghetti

Oliver Kennedy

Wolfgang Gatterbauer

model

Problem: training a probabilistic model from <u>sampled answers to Boolean queries</u> **Main Contribution**: a novel, tuple-independent probabilistic DB with Beta priors

Database Learning: Toward a Database that Becomes Smarter Every Time

Beliefs...

Yongjoo Park, Shahab Tajik, Michael Cafarella, Barzan Mozafari

U.Michigan, Ann Arbor

11AM | Continental C

Previous

40 Years of DB research: Repetition of "Query → Answer"

Our Work

DB Learning: More queries → Fast query processing

(ML: More observation → More Accurate)

The first work that becomes faster every time by exploiting the answers to past queries

Beliefs...

Staging User Feedback toward Rapid Conflict Resolution in Data Fusion

Romila Pradhan

Siarhei Bykau

Sunil Prabhakar

How to be most effective with user feedback?

Discovering Your Selling Points: Personalized Social Influential Tag Exploration Yuchen Li; Ju Fan; Dongxiang Zhang; Kian-Lee Tan

Coarsening Massive Influence Networks

Social Network

for Scalable Diffusion Analysis

Naoto Ohsaka, Tomohiro Sonobe, Sumio Fujita, Ken-ichi Kawarabayashi

We propose

reduction strategy, scalable algorithm, analysis framework

Accuracy guarantee

1 hour for billion edges

2-30× faster

memory TIM+

machine

EaSylM

Akhil Arora* | Sainyam Galhotra* | Sayan Ranu

machine

EaSvIM

Interactive Mapping Specification with Exemplar Tuples

Mappings...

Give me a few tuples, I'll get you a mapping

Company

IdCompany	Name	Town
'C1'	'AA'	'Paris'
'C2'	'Ev'	'Lyon'

Flight

Departure	Arrival	IdCompany
'Lyon'	'Paris'	'C1'
'Paris'	'Lyon'	'C2'

Travel Agency

Have Agency				
IdAgency	Name	Town		
'A1'	'TC'	'L.A.'		

Target

Departure
Town IdCarrier
'Lyon' 'Id1'
'Paris' 'Id2'

Arrival
Town IdCarrier
'Paris' 'Id1'

'ld2'

Final mapping

 $\mathbf{m_1}: Company(c1, aa, paris_1)$

 $\land Flight(lyon, paris_2, c1)$

 $\rightarrow \exists id1, Firm(id1, aa, paris_1)$

 $\land Departure(lyon, id1)$ $\land Arrival(paris_2, id1)$

 $\mathbf{m_2}: TravelAgency(a1, tc, la)$

 $\rightarrow \exists id3, Firm(id3, tc, la)$

A. Bonifati, U. Comignani, E. Coquery, R. Thion

QIRANA: A Framework for Scalable Query Pricing

Mappings...

Shaleen Deep, Paris Koutris University of Wisconsin-Madison

Problem : Design scalable pricing framework

- increased demand for data markets
- need for pricing systems with formal guarantees

Proposed Solution: QIRANA

- scalable
- arbitrage-free data pricing framework
- allows customizability for seller
- history-aware pricing

Talk@Session 14, Lake Michigan

Opt. & Perf. (1)

Should I Scan or Should I Probe?

Michael S. Kester

Manos Athanassoulis

Stratos Idreos

Optimization of Disjunctive Predicates for Main Memory Column Stores

Fisnik Kastrati; Guido Moerkotte

Opt. & Perf. (1)

• Problem: Optimization of disjunctive predicates

$$(p_{1,1} \wedge \ldots \wedge p_{1,n}) \vee \ldots \vee (p_{m,1} \wedge \ldots \wedge p_{m,n})$$

- Current optimization schemes for disjunctive predicates are based on heuristics which produce poor plans
 - Query is transformed into either DNF or CNF and then optimized
- When optimizing disjunctive predicates, the true optimization potential cannot be achieved by means of traditional plans
 - We can fill this gap by means Bypass Processing
- We propose a new algorithm which exploits Bypass processing
 - Our experiments show an improvement in plan quality by an average factor of over 2000 vs. heuristics used in RDBMSs

A Top-Down Approach to Achieving **Performance Predictability** in Database Systems

Opt. & Perf. (1)

11AM Lake Erie

Jiamin Huang; Barzan Mozafari; Grant Schoenebeck; Thomas F. Wenisch

- Q1. How to automatically identify root causes of performance variance in a complex codebase?
- Q2. How to make database systems more predictable but also faster?
- Q3. How our techniques improved MySQL and are deployed on 2M+ servers today?

Teaser Talks (Second Part)

Two-Level Sampling for Join Size Estimation

AQP (2)

Yu Chen; Ke Yi

Hong Kong University of Science and Technology, Hong Kong SAR, China

- Problem: Estimate join size
 - Selection predicates given at query time
- Our solution: Sampling

$$sample(\sigma_c(R)) = \sigma_c(sample(R))$$

- Two-Level Sampling
- o One Pass, Unbiased, Smaller Error
- Beats previous sampling methods
- Applications
 - Query optimization (join order)
 - Approximate query answering (COUNT, SUM, AVG

Customer \bowtie Order

 $\sigma_{\text{Age} <=35}(Customer) \bowtie \sigma_{\text{TotalPrice} > 200}(Order)$

	Customer				Order			
	Cust key	Name	•••	Age		Ord key	Cust key	Total Price
	1	Lizabeth		41	\	1	2	322
	2	Elliott		65	1	2	4	553
	3	Helga	•••	20		3	5	420
	4	Parker		47	X	4	3	82
	5	Wilford		22		5	3	120
JI	M, AV	(G)			//	6	1	604
- '	, /	•,			7	7	2	418

A General-Purpose Counting Filter: Making Every Bit Count

AQP (2)

By the end of my talk I hope to convince you to replace all your Bloom filters with a new data structure, the counting quotient filter (CQF).

- Problem: Bloom filters lack features that many applications need.
 - o Can't count, merge, resize, delete, scale out of RAM, etc.
 - Applications are forced to work around the limitations.
- Solution: Counting quotient filter (CQF).
 - Supports counting, merging, scaling out of RAM, etc.
 - Counts skewed input distributions efficiently.
 - Faster and smaller than a Bloom filter.
- Several computational biology and streaming applications teams are already replacing Bloom filters with CQFs in their code.

Prashant Pandey Michael A. Bender Rob Johnson Rob Patro

BePI: Fast and Memory-Efficient Method for Billion-Scale Random Walk with Restart

¹Jinhong Jung; ¹Namyong Park; ²Sael Lee; ¹U Kang

¹Seoul National Univ. and ²The State Univ. of New York Korea

- o RWR measures relevance scores between nodes in graphs
- O How can we compute RWR scores quickly in very large graphs?

Proposed method: BePl

 Fast and scalable by taking the advantages of both preprocessing and iterative approaches

Experimental Results

- Process 100x larger graphs and requires 130x less memory space than existing preprocessing methods
- Compute RWR scores up to 9x faster than its competitors

AQP (2)

Session 16, Continental B

Determining the Impact Regions of Competing Options in Preference Space

User Pref.

¹Bo Tang; ²Kyriakos Mouratidis; ¹Man Lung Yiu ¹The Hong Kong Polytechnic Univ., ²Singapore Management Univ.

Occupation

Customer Profile

Tastes & Preferences
Income

Education

Age

Customer Profiling

Market Analysis

Competitive Analysis

(Session 17, 14:00-14:25, Continental C)

Efficient Computation of Regret-ratio Minimizing Set:

User Pref.

A Compact Maxima Representative

Abolfazl Asudeh; Azade Nazi; Nan Zhang; Gautam Das

Regret-ratio minimizing set can serve for (approximately) answering maxima queries when convex hull is large.

We make several fundamental theoretical as well as practical advances in developing such a compact set.

- In 2D: we develop an optimal linearithmic time algorithm by leveraging the ordering of skyline tuples.
- In HD: we develop an *approximation algorithm* that runs in linearithmic time and guarantees a regret ratio, within *any arbitrarily small user-controllable distance* from the optimal regret ratio.

FEXIPRO: Fast and Exact Inner Product Retrieval in Recommender Systems

User Pref.

¹ Hui Li; ² Tsz Nam Chan; ² Man Lung Yiu; ¹ Nikos Mamoulis ¹ The University of Hong Kong and ² Hong Kong Polytechnic University

Problem: top-k inner product retrieval

- Matrices Q and P come from matrix factorization
- Large q^Tp indicates a possible recommendation

- Use Thin SVD, Integer Approximation and Monotonicity Reduction to manipulate data
- Orthogonal to existing systems

Experiments

- At least one order of magnitude faster than existing methods
- Single-thread FEXIPRO is faster than multithread Intel MKL and requires much less memory

1.6 1.3 0.7 1.0 0.4 0.6 0.8 2.7 2.8 2.2

0.5 1.0 **4.9 4.9** 4.0

 \mathbf{Q}^{T}

Large Values = Good Recommendation

Feedback-Aware Social Event-Participant Arrangement

Jieying She; Yongxin Tong; Lei Chen; Tianshu Song

- Background & Motivation
 - Event arrangement in EBSN
 - Existing studies
 - The satisfaction scores are hard to learn
 - Users may not accept the arrangements
- Solutions
 - Multi-arm Bandit (MAB) based framework
 - Thompson Sampling based solution
 - Upper Confidence Bound (UCB) based solution
- Experiments
 - The Thompson Sampling based solution does not perform well under FASEA
 - The *UCB* based solution *is the best in overall* by extensive experiments on both real and synthetic datasets

Exploiting Common Patterns for Tree-Structured Data

Zhiyi Wang Shimin Chen (Institute of Computing Technology, Chinese Academy of Sciences)

STEED:

System for **T**r**EE** structured **D**ata

- Supports tree-structured data: e.g., JSON, Protocol Buffers, etc.
- Exploits real-world data pattern: simple path optimization
- Achieves 10~1000X speedup compared to state-of-the-art systems

Extracting & Analyzing Hidden Graphs from RDBMSs

Tree & Graph (2)

Konstantinos Xirogiannopoulos, Amol Deshpande | University of Maryland, College Park

Graph-structured **data** can enable **analyses** *impossible* using SQL analytics

But first...**where** is your data **stored**??

Problem: When **extracting** graphs from RDBMSs, graphs often **orders-of-magnitude** larger than the **input** tables. Graph may **not fit** in memory

Solution: A software layer (GraphGen) over the database that **efficiently** loads in a **condensed-representation**, and enables efficient processing through various **APIs**.

Tree & Graph (2)

TrillionG: A Trillion-scale Synthetic Graph Generator using a Recursive Vector Model Himchan Park; Min-Soo Kim

Motivation

- o Large-scale realistic graphs for benchmarks, e.g., RMAT, Kronecker
- o Low-level core techniques for rich graph generation, e.g., LDBC, gMark

Solutions

- A Vertex Scope approach (AVS)
- Recursive Vector Model (RecVec)

Experiments

- More realistic graphs by adding noises
- Schema-driven rich graph
- A trillion edges graph within 2 hours using just 10 PCs

Schema Independent Relational Learning

ML

Jose Picado; Arash Termehchy; Alan Fern; Parisa Ataei

Mission: Find any sign of life on Earth.

boxes					
box item		color	desc		
1	bomb	green	solid		
2	plant	blue	wet		

The result of **current** learning algorithms depend on the schema.

contains			
box	color		
1	bomb		
2	plant		

color		
box	item	
1	green	
2	blue	

	description			
	box	desc		
1	1	solid		
1	2	wet		
4				

life(x) := contains(y,x), color(y,green).

People represent same data using different schemas.

We want to learn same accurate answers over all possible schemas for the same data.

life(x) := boxes(y,x,z,wet).

life(x) :- contains(y,x), color(y,z), description(y,wet).

Castor: schema independent, accurate and efficient. It leverages concepts of schema design.

Scalable Kernel Density Classification using Threshold-Based Pruning

ML

Edward Gan; Peter Bailis

ML + Predicate Pushdown: Asymptotic (1000x) Speedups

Kernel Density Estimation

Classification Predicate

Kernel Density Classification

K-d tree Index

Zekai "Jacob" Gao; Shangyu Luo; Luis Perez; Chris Jermaine

Our results: the BUDS optimized implementations have competitive performance compared to the hand-coded SQL implementations

Improving the Life of a Data Scientist

ML

Zoi Kaoudi; Jorge Quiane; Sara Thirumuruganathan; Sanjay Chawla; Divy Agrawal

An Experimental Study of

Opt. and Perf. (2)

Bitmap Compression and Inverted List Compression

Jianguo Wang; Chunbin Lin; Yannis Papakonstantinou; Steven

	Swanson			
15	8 45	64	80	168

The integer array compression problem

bitmap compression

inverted list compression

Which is better?

OtterTune

Automatic Database Management System Tuning Through Large-scale Machine Learning

OtterTune leverages past experiences to tune new DBMS configurations.

OtterTune outperforms tuning scripts and Amazon RDS.

Can OtterTune match a DBA?

Dana Van Aken; Andrew Pavlo; Geoffrey J. Gordon; Bohan Zhang

Amazon Aurora: Design Considerations for High Throughput Cloud-Native Relational Databases

Problem: Once storage and compute are decoupled the I/O bottleneck moves to the network

- Offload redo processing from compute
- Purpose-built scale-out multi-tenant log-structured distributed storage service designed for databases
- Storage volume striped across hundreds of nodes over 3 availability zones (AZ)
- Six copies of data, two in each AZ to protect against correlated AZ+1 failures

Storage nodes with SSDs

Result: Better durability, availability, & jitter

... which are all the same thing (on different time scales)