
SIGMOD 2017
Teaser Talks
Tuesday - May 17th 2017

ACIDRain: Concurrency-Related Attacks
on Database-Backed Web Applications

Todd Warszawski and Peter Bailis (Stanford University)

● Do programmers use transactions correctly?
● Analyzed 12 open source eCommerce applications
● 22 new vulnerabilities
● 2M+ websites (50% of eCommerce sites) at risk

Concurrency♜

Cicada: Dependably Fast Multi-Core In-Memory Transactions
Hyeontaek Lim, Michael Kaminsky, David G. Andersen (CMU & Intel Labs)

♜ Concurrency

You need Cicada. Dependably Fast Transactions.
See us at 11:25 in Concurrency (1), ♜Continental B.

BatchDB: Efficient Isolated Execution of Hybrid OLTP+OLAP Workloads
D. Makreshanski, J. Giceva, C. Barthels, & G. Alonso (ETH Zurich)

♜ Concurrency

High Performance

Data freshness;
Consistency

Performance
Isolation

Replication

Batch Scheduling

Efficient Update Propagation

Dedicated resources

Azure Data Lake Store
Raghu Ramakrishnan and others (Microsoft)

Storage & Dist♞

OctopusFS: A Distributed File System
with Tiered Storage Management

Elena Kakoulli & Herodotos Herodotou (Cyprus University of Technology)

Storage & Dist♞

Monkey: Optimal Navigable Key-Value Store

memory

update costlookup cost
LSM-tree
merging

Bloom
filters

Niv Dayan, Manos Athanassoulis, Stratos Idreos

update cost

lo
o

ku
p

 c
o

st

Monkey

m
ax

throughput

existing systems

allocation
optimization

navigation

Storage & Dist♞

Enabling Signal Processing over Data Streams
M. Nikolic, B. Chandramouli, & J. Goldstein (U. Oxford & MSR)

Streams♝

Complete Event Trend Detection in High-Rate Event Streams
O.Poppe*, C.Lei**, S.Ahmed*, E.Rundensteiner* (WPI*, NEC Labs America**)

Streams♝

LittleTable: A Time-Series Database and Its Uses
Sean Rhea, Eric Wang, Edmund Wong, Ethan Atkins, and Nat Storer

The relational database for all of Cisco Meraki’s time-series data:
Usage counters, wireless (dis)association logs, video motion vectors, etc.

Tuned to applications of time-series data (e.g., Meraki Dashboard, IoT apps):
Insatiable storage needs: always want more resolution, longer retention
Highly skewed read patterns: most reads to newest data, yet minority read old
Rows represent facts measured at particular times: no need for updates
Single writer per source: no read-write consistency concerns
Recently written data is recoverable: on crash, re-read from original source

Implements log-structured, two-dimensional clustering to get high performance:
400k+ rows/sec read/write on a single spinning disk and CPU

Streams♝

Incremental View Maintenance over Array Data
Weijie Zhao, F. Rusu, B. Dong, K. Wu, P. Nugent (UC Merced & LBNL)

Vers & Inc Maint☼

Incremental Graph Computations: Doable and Undoable
W. Fan, C. Hu, & C. Tian (Univ. of Edinburgh & Beihang Univ.)

● Batch algorithm vs. Incremental Algorithm
● Boundedness - independent of |G|
● Undoable

○ ∆-reductions - a systematic method
○ Unboundedness

■ regular path queries
■ strongly connected components
■ keyword search

● Doable
○ Two new measures: locality and relatively boundedness
○ Localizable incremental computation

■ Keyword search and subgraph isomorphism
○ Relatively bounded incrementalization

■ Regular path queries and keyword search

Vers & Inc Maint☼

Vers & Inc Maint☼
Amit Chavan | Amol Deshpande
University of Maryland, College Park

Goal:
➔ Initiate a systematic study of how to execute

queries in a delta-based storage system
➔ Queries: Checkout, Intersection, Union, t-Threshold

Idea:
➔ Exploit Δ properties &

introduce new transformation rules
➔ Cost-based optimization algorithms based on above

Result:
➔ Order of magnitude improvements, even for simple

checkout queries
➔ DEX is a wrapper over git and built for

dataset versioning

Delta Storage

➢ Common method to store immutable
copies of data, e.g., dataset versions

➢ Existing systems focus on retrieval
performance only

➢ Query:
Find common records in file_X and
file_Y ?

Checkout[file_X]
Checkout[file_Y]∩

DEX: Query Execution in a Delta-based Storage System

Massively Parallel Processing of Whole Genome
Sequence Data: An In-Depth Performance Study

A. Roy, Y. Diao, U. Evani, A. Abhyankar, C. Howarth, R. Le Priol, T. Bloom

(UMass Amherst, New York Genome Center, École Polytechnique)

☽

Sequencing technology has advanced significantly

Amount of sequence data has
doubled every seven months, far
exceeding Moore’s Law

● Sequencing center: ≥10
terabytes a day

● Per sample: 0.5 – 1 terabyte

A new paradigm of data-intensive computing

● Personalized Genomics:

Precise & SpecificEarly Detection No side effects

Objectives 1. A big data platform to reduce processing
time from weeks to 1-2 days

2. Strengths and limitations of big data
technology and its future research

● When does big data technology offer superlinear
speedup?

● When does it provide sublinear speedup?
● What is the quality of results (genome mutations)?

Parallel/Dist QP

● Answer biomedical questions with high speed and resolution

Distributed Provenance Compression
Chen Chen*, Harshal Tushar Lehri*, Lay Kuan Loh+, Anupam Alur*, Limin Jia+,

Boon Thau Loo*, Wenchao Zhou# (U. Penn*, CMU+, Georgetown Univ.#)

Problem: high storage overhead

Challenge: reduce storage with low network overhead

Solution: equivalence-based, input-oriented provenance compression

☽ Parallel/Dist QP

n1 n2 n3

p at n1 p at n2 p at n3

Route p to n2 Route p to n3

● Group provenance into equivalence classes

● Maintain one copy for each equivalence class

Significant storage reduction

● Identify equivalence based on input attributes

● Avoid generating redundant provenance

Negligible network overhead

Network provenance:
Execution history of network events

Parallel/Dist QP☽ Parallel/Dist QPROBUS: Fair Cache Allocation for Data-parallel Workloads
Mayuresh Kunjir, Brandon Fain, Kamesh Munagala, Shivnath Babu (Duke University)

☽

- Cache can lead to performance speedups.
- Cache can be shared by multiple tenants.

Challenge:
How to bring fairness
to cache allocation?

Randomized policies

Optimize for speedup and fairness together

Batched processing of workload

Utility modeling

Sharing aware

Teaser Talks
(Second Part)

ConcurrencyTransaction Repair for Multi-Version Concurrency Control
M. Dashti, S. Basil John, A. Shaikhha, C. Koch (EPFL)

● Goal: Reuse computation instead of "abort and restart"

● Use-Cases:
○ High-contention objects
○ Long-running transactions

● Key ideas:
○ Expose program dependencies to concurrency control algorithm
○ Associate correctness checks used in validation with blocks of code

● Experimental Results:

♜

(Banking benchmark) (Trading benchmark)

● Goal: People collaborate in the cloud without trust
○ Every update recorded in a tamper-proof way

○ (promise of Blockchain, but in the cloud)

● Traditional approach: Merkle Trees (pessimistic)
○ Provably correct, but slow and poor concurrency

○ 1000s of operations / second

● Our approach: Verified Memory (optimistic)
○ Provably correct, high concurrency, but catches violations later

○ 1,000,000s of operations / second

Concerto in a Nutshell
 A. Arasu, K. Eguro, R. Kaushik, D. Kossmann, P. Meng, V. Pandey, & R. Ramamurthy

Microsoft Research, UCSB

♜ Concurrency

ConcurrencyFast Failure Recovery for Main-Memory DBMSs on Multicores
Y. Wu, W. Guo, C.-Y. Chan, K.-L. Tan (National University of Singapore)

♜

Transaction processing

Fa
ilu

re
 re

co
ve

ry
Fa

ste
r

Faster

PACMAN

PACMAN is a parallel log recovery approach
designed for transaction-level logging.

Key idea: leverage a combination of static
and dynamic analysis

❏ Static Time
❏ Construct local dependency graphs
❏ Construct global dependency graph

❏ Recovery Time
❏ Split transactions into pieces
❏ Replay transaction pieces

Local dep. graph Global dep. graph Split txns Replay in parallel

Tuple-level logging

Txn-level logging

PACMAN achieves efficient failure recovery without
compromising transaction processing performance!

Bringing Modular Concurrency Control to the Next Level
C. Su, N. Crooks, C. Ding, L. Alvisi, C. Xie (UT Austin & Cornell)

♜ ConcurrencyConcurrency

Tebaldi: a distributed transactional key-value store that federates multiple CCs

● Motivation & Approach:
○ No single concurrency control fits all workloads.
○ Partition txns, assign each group a specialized CC.
○ But conflicts across groups matter!

● Our Secret Sauce:
○ Organize CCs as nodes in a multi-level tree.
○ Each node manages conflicts for a set of txns.
○ Nodes delegate responsibility for disjoint subsets of

txns to children better-suited to handle them.

● Results:
○ 3.7x higher throughput than Callas [SOSP ‘15].

Wide Table Layout Optimization based
on Column Ordering and Duplication

H. Bian, Y. Yan, W. Tao, L. Chen, Y. Chen, X. Du, T. Moscibroda
(Renmin U. of China, MSR, & MIT)

Storage & Dist♞

1000+Columns
4000+Queries
How to make a BEST
column order?

Query Centric Partitioning and Allocation for
Partially Replicated Database Systems

Tilmann Rabl & Hans-Arno Jacobsen (TU Berlin)

Analytical model and automatic strategy for query centric partitioning and allocation

Key benefits:

● Predictable performance
● Robustness
● Linear (read), good (write) speedup

Storage & Dist♞

Classification Allocation Implementation

Spanner: Becoming a SQL System
D. Bacon, N. Bales, N. Bruno, B. Cooper, A. Dickinson, A. Fikes, C. Fraser,

A. Gubarev, M. Joshi, E. Kogan, A. Lloyd, Sergey Melnik, C. Taylor, R. Rao, D. Shue,
M. van der Holst, D. Woodford (Google)

● Distributed transactional data management system
● Globally replicated, highly-available managed service
● Backs hundreds of mission-critical services at Google

○ AdWords, Google Play, Photos, etc.
○ 10s of millions QPS, 100s of petabytes, 5,000+ databases

● Publicly available on Google Cloud Platform:
http://cloud.google.com/spanner

● This talk: making Spanner a SQL DBMS

Storage & Dist♞

Session 7: Storage and
Distribution (2)
14:00-15:40 @ Continental C

mailto:melnik@google.com
http://cloud.google.com/spanner
http://cloud.google.com/spanner

Landmark indexing for evaluation of
label-constrained reachability queries

L. Valstar, G. Fletcher (TU Eindhoven, Netherlands),
Y. Yoshida (National Institute of Informatics, Japan & Preferred Infrastructure, Inc.)

In a social network, are Jane and John connected by a chain of social relationships?

In a biological network, is there an interaction pathway between two particular proteins?

Unfortunately, current solutions for evaluating such “label-constrained reachability queries”
do not scale to massive graphs occurring in practice.

Our contributions: new indexing methods for efficient LCR evaluation,
● scaling to orders of magnitude larger graphs than current LCR indexing strategies,
● with up to orders of magnitude faster query evaluation than state of the art methods.

Session 8: Tree & Graph Processing 1, 14:00-15:40, Buckingham

Tree & Graph♝

Tree & Graph♝ Efficient Ad-Hoc Graph Inference and Matching
in Biological Databases

Xiang Lian (Kent State U.) & D. Kim (U. of Texas Rio Grande Valley)

The Problem: Given a DAG G , find the smallest DAG by TR (transitive reduction) and ER (equivalence reduction)

DAG Reduction: Fast Answering Reachability Queries
J. Zhou, S. Zhou. J. Xu Yu, H. Wei, Z. Chen, X. Tang

(Donghua U., Yanshan U., Chinese U. of Hong Kong, Shanghai Lixin U. of Commerce, Yanshan U.)

Tree & Graph♝

Flexible and Feasible Support Measures for
Mining Frequent Patterns in Large Labeled Graphs

J. Meng & Y. Tu (U. of South Florida)

Tree & Graph♝

Problem: How to
calculate support
(frequency) of a
pattern in a single
graph?

Accelerating Pattern Matching Queries in
Hybrid CPU-FPGA Architectures

David Sidler, Zsolt Istvan, Muhsen Owaida, Gustavo Alonso (ETH Zurich)

New HW☼

FPGAs are going to be in the processor!

How to use FPGAs to accelerate
string operations and text processing

Talk today

Hardware Operators:
• Regular Expression
• Skyline
• Stochastic Gradient Descent (SGD)

Demo tomorrow

Free Swiss

Chocolate!

A Memory Bandwidth-Efficient Hybrid Radix Sort on GPUs
Elias Stehle & Hans-Arno Jacobsen (Technical University of Munich (TUM))

New HW☼

Sorting requires to read/write input many times

GPUs have extremely high memory bandwidth

baseline theoretical
speed-up

minimum
speed-up

maximum
speed-up

 CUB, v. 1.5.1 1.60x 1.6x 4.0x

 CUB, v. 1.6.4 1.25x 1.2x 3.2x

 Multisplit 1.25x 1.3x 1.8x

 most recent work

→ Up to 4.0x speed-up over orig. baseline
→ At least 20% faster than most recent work

We propose a faster GPU sorting algorithm:

FPGA-based Data Partitioning
Kaan Kara, Jana Giceva, & Gustavo Alonso (ETH Zurich)

Partitioning data is necessary and expensive!

New HW☼

● Data sizes keep increasing while cache sizes do not.
● Partitioning has been fully optimized for a CPU.

Specialized hardware is becoming widely available.

Can we perform data partitioning more
efficiently using an FPGA?

Xeon+FPGA F1 instances Catapult

Why would an FPGA be good at
partitioning data?

How does a hybrid FPGA+CPU join work?

Template Skycube Algorithms for Heterogeneous
Parallelism on Multicore and GPU Architectures

K. S. Bøgh, S. Chester, D. Šidlauskas, I. Assent (Aarhus U., NTNU, & EPFL)

● Specialized accelerators, such as GPUs, are becoming omnipresent.
● How to meaningfully utilize all parts of a heterogenous system, for a single expensive

operator, while retaining scalability and efficiency?
● Redesign classic design pattern, for hardware specialization.
● 4189x speedup in application on real data (8h -> 8 sec).

New HW☼

Heterogeneity-aware Distributed Parameter Servers
Jiawei Jiang, Bin Cui, Ce Zhang, & Lele Yu (Peking Univ. & ETH Zurich)

Current approaches

● BSP(Bulk Synchronous Parallel)
● ASP(Asynchronous Parallel)
● SSP(Stale Synchronous Parallel)

Challenge

● Heterogeneous cluster Straggler
● Delayed update Unstable SGD

Parallel/Dist QP☽

Problem: How to synchronize in distributed machine learning?

Optimal

Current

Delayed
update

Goal

● Per-worker global learning rate
● Consider the delay

Our approach

● Model the parameter server
● Model the staleness of updates
● Multi-version control

Result

● Baselines: MLlib, Petuum, TensorFlow
● 2-12x speedup

Distributed Algorithms on Exact Personalized PageRank
T. Guo, X. Cao, G. Cong, J. Lu, X. Lin (NTU, UNSW, & U. of Helsinki)

● Problem:
○ How to compute Personalized

PageRank Vector in a distributed way?

● Challenges:
○ Exactness
○ Parallel
○ Costs. Time, space and network costs

● Solutions
○ Graph partitioning based algorithm
○ Hierarchical Graph partitioning

● Features
○ Exact
○ Load Balanced
○ Low communication cost
○ One time data transfer

Parallel/Dist QP☽

Parallelizing Sequential Graph Computations
W. Fan, J. Xu, Y. Wu, W. Yu, J. Jiang, Z. Zheng, B. Zhang, Y. Cao, C. Tian

(Univ. of Edinburgh, WSU, Hong Kong Baptist U., & Peking U.)

☽ Parallel/Dist QP

GRAPE, parallelizing existing sequential algorithms as a
whole, and guaranteeing convergence and correctness
when the sequential algorithms provided are correct.
• Sequential graph algorithms can be “plugged into”

GRAPE with minor additions, and get parallelized.
• MapReduce, BSP (bulk synchronous parallel) and

PRAM models are optimally simulated by GRAPE.
• Foundation: a simuteneous fixed point computation

with partial evaluation and incremental evaluation.

Motivation

• It is nontrivial for one to learn how to program in the
new parallel models, e.g., “think like a vertex”.

• Graph computations have been studied for decades,
and a number of sequential graph algorithms are
already in place. Can we use them without recasting?

• Do existing parallel graph engines guarantee
termination and correctness?

Features
• Ease of programming. Only need to provide three sequential algorithms for Q

with minor additions.
• Semi-automated parallelization. Guarantee to converge at correct answers

under a monotonic condition, if the three sequential algorithms provided are
correct.

• Graph-level optimization. GRAPE inherits all optimization strategies available for
sequential algorithms and graphs.

• Scale-up. GRAPE achieves comparable performance to the state-of-the-art
graph systems.

