

6-3

Roadmap

 Provisioning (& scheduling): what do I need (& when)?
 Recovery: what do I do when what I need fails?

 Working with markets

☞These problems are not limited to DB & ML workloads, but we shall
see how DB & ML add twists

6-4

Provisioning: Example Decisions

 Given an ML program, what types of machines to acquire,
and how many

– A bigger cluster may get results faster, but cost more
– No perfect speedup, so big clusters may not give good cost/time trade-off

 Given a cluster, how to configure the execution of an ML program
– What’s the appropriate degree of parallelism

for an execution step?
– Overhead of parallelism isn’t always justified

– How much memory do we allocate to
master and work processes?

– Optimal allocation depends on computation and data access patterns

☞Decisions interact with optimizations discussed earlier
– Cluster configuration affects degree of parallelism and memory allocation, as

well as optimal execution strategies

Cumulon [SIGMOD'13+follow-up]

SystemML [SIGMOD'15]

ScalOps [DeBull'12]
SystemML [DEBull'14,PVLDB'16]

6-5

Provisioning/Scheduling: Techniques

Depend on the level of abstraction:
 Program is a black box

– First observe, and then decide; can leverage past execution profiles

 Program is broken down into a workflow with clear input/output for each
unit, e.g., MapReduce, Spark

– More effective profiling and optimization on a per-unit basis

 Program is specified declaratively, DB-style
– Reusable and composable cost models
– Bigger search space through rewrites
– Cost-based what-if analysis

 Program follows a specific template
– Even more opportunities arise; e.g., scheduling parameter

updates/synchronization in parameter servers [VLDB'10,OSDI'14] + resource
provisiong in Dolphin [MLSys'16] + adapting learning rate by update staleness in
DynSGD [SIGMOD'17]

☞Adaptation is always key, regardless of abstraction level

Cumulon [SIGMOD'13+follow-up]
SystemML [ICDE'11+follow-up]

6-6

Recovery: General Techniques

Depend on the level of abstraction:

 Program is a black box
– Checkpointing VM state in reliable/redundant storage

 Program is a workflow with clear input/output for each unit
– Write input/output to reliable storage + rerun failed units, e.g.,

Hadoop/MapReduce
– Intermediate results can be in memory and lost + recover using lineage

Spark RDD [NSDI'12]

 Program is specified declaratively, DB-style
– Finer-grained lineage-based recovery using knowledge of operators +

intelligent selective checkpointing Cümülön [PVLDB'15]

6-7

Recovery: Algorithm-Specific

 Many ML algorithms can tolerate missing input or errors by design
– Instead of recovering to a state where as if failures never occurred, convert

failures into “soft” ones that algorithms can handle themselves

 Example: distributed batch gradient descent

– In an iteration, if a task fails to calculate the contribution from one partition
of data, simply use an approximation (from the previous iteration)

– Algorithm still converges

☞Generalized to user-defined, algorithm-specific “compensations”

Narayanamurthy+ (REEF) [BigLearn'13]

Schelter+ [CIKM'13]

6-8

Fixed, on-demand price

2016

Working with Markets

 “On-demand” (regular) instances: fixed price, guaranteed
 “Spot” instances: availability/price vary over time; e.g; on Amazon:

– You set a bid price, and get instances if bid price ≥ market price
– You pay market price (@hour start), by hours
– You lose the instances if market price rises above your bid, but your last

hour will be free

 Price can depend on machine
type, region, and time

☞How do we leverage markets effectively?
– Pop quiz: would you ever bid higher than the fixed price?

– Yes! Less chance of losing them, yet still lower cost on average

6-9

Working with Markets: Techniques

 Diversify your portfolio: consider instances with different types, across regions
– If one market is too expensive, turn to others, e.g., Dyna [TCC'16]
– A heterogeneous cluster may be best for mixed workloads, e.g., Zhang+ [PER'15]

 Minimizing expected cost is often not enough; need to control risk
– Model the market to quantify uncertainty, e.g., Cümülön(-D) [PVLDB'15,'17]

 Zafer+ [Cloud'12] squeezes entire execution on spots in an hour; retries with a
higher bid price if you lose them

– Losing spots within an hour incurs no cost with Amazon

 Dyna [TCC'16] tries faster spots before falling back to on-demand
– But only if doing so improves the execution time distribution

 Cümülön [PVLDB'15] picks the optimal mix of spot/on-demand instances
– To minimize expected cost while meeting deadline/budget with high probability
– Recovers and re-optimizes if spots are lost

 Cümülön-D [PVLDB'17] adapts proactively dynamically and proactively
– Bids/terminates as needed, based on execution progress and market condition
– Solves the optimization problem as a Markov Decision Process (MDP) and pre-compiles a

“cookbook” to apply at run time

6-10

Summary

 Large-scale ML is increasingly being done in a cloud

 Challenges of elasticity are not unique to DB & ML

 Lots of uncertainty, but adaption & stochastic modeling
come to rescue

 Different levels of abstraction
lead to different opportunities—
declarative (DB-style) ML enables
smarter, more effective solutions

https://www.quora.com/What-is-the-difference-between-abstract-art-and-modern-art

6-11

References for Part 6: Resource Elasticity
 Cumulon [SIGMOD'13] Huang et al. “Cumulon: optimizing statistical data analysis in the cloud.” SIGMOD 2013

 Cümülön [PVLDB'15] Huang et al. “Cümülön: matrix-based data analytics in the cloud with spot instances.” PVLDB 2015

 Cümülön-D [PVLDB'17] Huang & Yang. “Cümülön-D: data analytics in a dynamic spot market.” PVLDB 2017

 Dolphin [MLSys'16] Zhou et al. “Dolphin: Runtime Optimization for Distributed Machine Learning.” ML Systems Workshop, 2016

 Dyna [TCC'16] Zhou et al. “Monetary cost optimizations for hosting workflow-as-a-service in IaaS clouds.” TCC 4(1), 2016

 DynSGD [SIGMOD'17] Jiang et al. “Heterogeneity-aware Distributed Parameter Servers.” SIGMOD 2017

 Narayanamurthy+ (REEF) [BigLearn'13] Narayanamurthy et al. “Towards Resource-Elastic Machine Learning.” BigLearn 2013

 Parameter Server [VLDB'10] Smola & Narayanamurthy. “An architecture for parallel topic models.” VLDB 2010

 Parameter Server [ODSI'14] Li et al. “Scaling Distributed Machine Learning with the Parameter Server.” OSDI 2014

 Schelter+ [CIKM'13] Schelter et al. “All Roads Lead to Rome: Optimistic Recovery for Distributed Iterative Data Processing.” CIKM
2013

 ScalOps [DeBull'12] Borkar et al. “Declarative systems for large-scale machine learning.” IEEE Data Eng. Bulletin, 35(2), 2012

 Spark RDD [NSDI'12] Zaharia et al. “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing .”
NSDI 2017

 SystemML [ICDE'11] Ghoting et al. “SystemML: Declarative machine learning on MapReduce.” ICDE 2011

 SystemML [SIGMOD'15] Huang et al. “Resource elasticity for large-scale machine learning.” SIGMOD 2015

 SystemML [VLDB'16] Boehm et al. “SystemML: Declarative machine learning on Spark.” PVLDB 9(13), 2016

 Zafer+ [Cloud'12] Zafer et al. “Optimal bids for spot VMs in a cloud for deadline constrained jobs.” Cloud Computing, 2012

 Zhang+ [PER'15] Zhang et al. “Exploiting Cloud Heterogeneity to Optimize Performance and Cost of MapReduce Processing.”
Performance Evaluation Review, 42(4), 2015

Part 7: ML Lifecycle Systems

Arun Kumar
UC San Diego  

La Jolla, CA, USA

SIGMOD 2017

Overview: ML Lifecycle Issues

Data sourcing
Feature engineering
and model selection

Model serving
Tighter loop between
inference and learning

Model management

Data Scientist/
ML Engineer

Feature Engineering

The process of obtaining a formal representation of the data-
generating process as structured signals (features) for an ML model

Q: What sort of operations constitute feature engineering?

Q: What is feature engineering (FE)?

Structured data: Whitening, feature selection/ranking, joins, PCA, etc.
Text: Bag-of-words, Parsing-based, Domain-specific, Word2Vec, etc.

Deep CNNs and RNNs for images, audio, video, time series, etc.

Depends on the data type!

High-quality features are the “secret sauce” of applied ML
FE operations are basically data transformations!

Often “brushed under the carpet” by ML community

Q: Why is it important from a data management perspective?

Feature Engineering Systems
Feature selection:
Obtain a subset of features to improve accuracy and/or interpretability

Columbus [SIGMOD’14]:
Often not a single algorithm but a human-in-the-loop dialogue process
Data scientist explores multiple subsets based on domain insights

CustID Churn? Age Income Gender City …

… … … … … … …

Understanding
customer churn

Evaluate error with all features in chosen set
Drop demographic features and re-evaluate
Add Gender back in and so on …

A few such common steps encoded as “declarative” ops in DSL
Impl. on top of R/Python; optimizing code-gen middleware
Batching/materialization; QR decomposition; coresets; warm start

Feature Engineering Systems

More open questions remain in systematizing feature engineering

Treating FE as a dataflow-oriented process; DB-style optimizations:
Brainwash [CIDR’13] / DeepDive [DataEng’14]
Workflows of UDFs; feature recommendations

KeystoneML [ICDE’17]
Alternative phy. impl. of solvers; cost-based op. selection

Reducing amount of work for feature coding/evaluation:
Zombie [ICDE’16]
Index structure to sub select relevant data; bandit techniques

Applying learning theory to skip features and help with sourcing tables:
Hamlet [SIGMOD’16]

Overview: ML Lifecycle Issues

Data sourcing
Feature engineering
and model selection

Model serving
Tighter loop between
inference and learning

Model management

Data Scientist/
ML Engineer

Model Selection

The process of obtaining a prediction function to capture a data-
generating process using data generated by that process

Q: What is model selection (MS)?

FE, AS, and PT often access the dataset (or subsets) repeatedly
A lot of opportunities to improve efficiency with DB-style opt.
FE, AS, and PT are inter-dependent and together constitute MS

Q: Why is it important from a data management perspective?

Model Selection Triple (MST)
(FE, AS, PT)

MSMS [SIGMODRec’15] FE: Feature Engineering
AS: Algorithm Selection
PT: (Hyper-)Parameter Tuning

14

Model Selection Triple (MST): (FE, AS, PT)

Data scientists typically think at a higher level of abstraction
Automation essentially groups MSTs en masse

MS abstractions can help capture intermediate points

Model Selection Process
MSMS [SIGMODRec’15]

Decide and code an MST manually

Manage results manually

Next iteration 3 Consumption

2
Execution

Evaluate model
 using system

Steering
1

…

Code
Generation

{FE1, FE2} x AS1 x
{PT1, PT2}

“Declarative” interfaces

Evaluate models
 using system

Manage results

Next iteration

1

2
Optimization

3 Provenance management

Group a set of “logically related” MSTs

Model Selection Process
Model Selection Triple (MST): (FE, AS, PT)MSMS [SIGMODRec’15]

Many old and recent MS abstractions can be “retro-fitted”
Several new MS abstractions can be introduced to co-exist

Autotuned
functions Columbus MLBase

The Higher Layers: Declarative Interfaces (some in hindsight!)

The Lower Layers: Optimized Implementations

{ {FE} x {AS} x {PT} }

New Abstractions

FE x AS x {PT} {FE} x AS x PT FE x {AS1 x {PT},
AS2 x {PT}} {FE} x {AS x PT}, …

E.g., glmnet() in R E.g., StepAdd() E.g., doClassify() …

In-memory In-RDBMS Others

The Narrow Waist:
A set of logically related

Model Selection Triples (MST)

Model Selection Management Systems (MSMS)
MSMS [SIGMODRec’15]

Model Selection Systems

Many open questions remain on optimizing/improving model selection
Interactions of PT with AS and FE
Exploiting redundancy across and within MSTs; cost models
Incorporating constraint/approximations and visualizations, etc.

Automation of AS and PT search with pre-defined search space:
MLbase [CIDR’13] / TuPAQ [SoCC’15]
Declarative ML tasks (e.g., “DoClassify”); fixed set of algorithms
Data batching; bandit techniques for explore-exploit search

Hemingway [MLSys’16]
Joint AS and cluster sizing for optimization algorithms
Observe-and-adapt approach for convergence properties

DB-style optimizations for PT and general meta-learning:
SystemML [ICDE’15]; GLADE [DanaC’12]

Overview: ML Lifecycle Issues

Data sourcing
Feature engineering
and model selection

Model serving
Tighter loop between
inference and learning

Model management

Data Scientist/
ML Engineer

Model Management Systems

Treating trained models as data themselves (store, query, debug, etc.)

Q: What is model management?

Integrating ML models with SQL querying: LongView [CIDR’11]

Iterative ML debugging: MindTagger [VLDB’15], PALM [HILDA’17]

Specialized storage engines and custom optimizations:
ModelHub [ICDE’17]
Versioned storage/retrieval of CNNs (sets of float matrices)
Optimizations for reducing storage footprint

Many open questions on managing large space of MSTs, especially for
large models (DNNs/trees); ML provenance and debugging

	1_Introduction.pdf
	Data Management in Machine Learning: Challenges, Techniques, and Systems�
	Who We Are
	Motivation: A Data-Centric View of ML
	Motivation: Systems Landscape
	Motivation: Tutorial Goals
	What this Tutorial is NOT
	Tutorial Outline

	1_Introduction.pdf
	Data Management in Machine Learning: Challenges, Techniques, and Systems�
	Who We Are
	Motivation: A Data-Centric View of ML
	Motivation: Systems Landscape
	Motivation: Tutorial Goals
	What this Tutorial is NOT
	Tutorial Outline

	2_SQL.pdf
	Part 2: ML with SQL & UDF
	ML in Database – Why?
	Roadmap
	Matrix Multiply: Take 1
	Matrix Multiply: Take 2
	Matrix Multiply: Take 3
	Ordinary Least Squares
	Observation
	Gradient Descent (GD)
	Stochastic GD (SGD)
	GD/SGD in SQL
	MCMC in SQL
	Approaches to SQL+ML
	Interface: SQL + Libraries/Extensions
	Interface: no SQL
	Summary
	References for Part 2: ML with SQL & UDF
	Part 2 Backup/Extra Slides
	𝑘-Means Clustering
	𝑘-Means as UDA
	Markov-Chain Monte-Carlo (MCMC)
	Example: Gibbs Sampling
	MCMC in SimSQL

	4_Rewrites_and_Operators.pdf
	Part 4: Rewrites, Operator Selection, �and Operator Fusion�
	Overview Optimizing Compilers �for ML Algorithms
	Logical Simplification Rewrites
	Logical Simplification Rewrites�Matrix Multiplication Chain Optimization
	Matrix Multiplication Chain Optimization�
	Matrix Multiplication Chain Optimization�
	Physical Rewrites and Optimizations
	Physical Operator Selection
	Example Physical Operators
	Fused Operators
	Sparsity-Exploiting Fused Operators
	Automatic Operator Fusion
	Runtime Adaptation (see AQP)
	References for Part 4�

	5_Access_Methods.pdf
	Part 5: Compression, Scan Sharing, and Index Structures�
	Motivation: Workload Characteristics
	Motivation: Workload Characteristics
	Background: Block Partitioning and Layouts
	Overview Techniques for Data-Intensive Machine Learning
	Compression Techniques
	Scan Sharing Techniques
	Index Structures and NUMA Awareness
	References for Part 5
	Backup: Compressed Linear Algebra (CLA)
	Backup: Index Structures
	Backup: Index Structures, cont.
	Backup: NUMA-Aware Partitioning and Replication
	Backup: Buffer Pool Management

	6_Elastic.pdf
	Part 6: Resource Elasticity
	Rise of Cloud
	Roadmap
	Provisioning: Example Decisions
	Provisioning/Scheduling: Techniques
	Recovery: General Techniques
	Recovery: Algorithm-Specific
	Working with Markets
	Working with Markets: Techniques
	Summary
	References for Part 6: Resource Elasticity

	8_Summary.pdf
	Part 8: Open Problems and �Conclusions�
	Open Problems: Optimizer and Runtime
	Open Problems: End-to-End Lifecycle
	Conclusions

	8_Summary.pdf
	Part 8: Open Problems and �Conclusions�
	Open Problems: Optimizer and Runtime
	Open Problems: End-to-End Lifecycle
	Conclusions

