










































































































































6-3

Roadmap

 Provisioning (& scheduling): what do I need (& when)?
 Recovery: what do I do when what I need fails?

 Working with markets

☞These problems are not limited to DB & ML workloads, but we shall 
see how DB & ML add twists
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Provisioning: Example Decisions

 Given an ML program, what types of machines to acquire, 
and how many

– A bigger cluster may get results faster, but cost more
– No perfect speedup, so big clusters may not give good cost/time trade-off

 Given a cluster, how to configure the execution of an ML program
– What’s the appropriate degree of parallelism 

for an execution step?
– Overhead of parallelism isn’t always justified

– How much memory do we allocate to 
master and work processes?

– Optimal allocation depends on computation and data access patterns

☞Decisions interact with optimizations discussed earlier
– Cluster configuration affects degree of parallelism and memory allocation, as 

well as optimal execution strategies

Cumulon [SIGMOD'13+follow-up]

SystemML [SIGMOD'15]

ScalOps [DeBull'12]
SystemML [DEBull'14,PVLDB'16]
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Provisioning/Scheduling: Techniques

Depend on the level of abstraction:
 Program is a black box

– First observe, and then decide; can leverage past execution profiles

 Program is broken down into a workflow with clear input/output for each 
unit, e.g., MapReduce, Spark

– More effective profiling and optimization on a per-unit basis

 Program is specified declaratively, DB-style
– Reusable and composable cost models
– Bigger search space through rewrites
– Cost-based what-if analysis

 Program follows a specific template
– Even more opportunities arise; e.g., scheduling parameter 

updates/synchronization in parameter servers [VLDB'10,OSDI'14] + resource 
provisiong in Dolphin [MLSys'16] + adapting learning rate by update staleness in 
DynSGD [SIGMOD'17]

☞Adaptation is always key, regardless of abstraction level

Cumulon [SIGMOD'13+follow-up]
SystemML [ICDE'11+follow-up]
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Recovery: General Techniques

Depend on the level of abstraction:

 Program is a black box
– Checkpointing VM state in reliable/redundant storage

 Program is a workflow with clear input/output for each unit
– Write input/output to reliable storage + rerun failed units, e.g., 

Hadoop/MapReduce
– Intermediate results can be in memory and lost + recover using lineage 

Spark RDD [NSDI'12]

 Program is specified declaratively, DB-style
– Finer-grained lineage-based recovery using knowledge of operators + 

intelligent selective checkpointing Cümülön [PVLDB'15]
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Recovery: Algorithm-Specific

 Many ML algorithms can tolerate missing input or errors by design
– Instead of recovering to a state where as if failures never occurred, convert 

failures into “soft” ones that algorithms can handle themselves

 Example: distributed batch gradient descent

– In an iteration, if a task fails to calculate the contribution from one partition 
of data, simply use an approximation (from the previous iteration)

– Algorithm still converges

☞Generalized to user-defined, algorithm-specific “compensations”

Narayanamurthy+ (REEF) [BigLearn'13] 

Schelter+ [CIKM'13]
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Fixed, on-demand price

2016

Working with Markets

 “On-demand” (regular) instances: fixed price, guaranteed
 “Spot” instances: availability/price vary over time; e.g; on Amazon:

– You set a bid price, and get instances if bid price ≥ market price
– You pay market price (@hour start), by hours
– You lose the instances if market price rises above your bid, but your last 

hour will be free

 Price can depend on machine 
type, region, and time

☞How do we leverage markets effectively?
– Pop quiz: would you ever bid higher than the fixed price?

– Yes! Less chance of losing them, yet still lower cost on average
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Working with Markets: Techniques

 Diversify your portfolio: consider instances with different types, across regions
– If one market is too expensive, turn to others, e.g., Dyna [TCC'16]
– A heterogeneous cluster may be best for mixed workloads, e.g., Zhang+ [PER'15]

 Minimizing expected cost is often not enough; need to control risk
– Model the market to quantify uncertainty, e.g., Cümülön(-D) [PVLDB'15,'17]

 Zafer+ [Cloud'12] squeezes entire execution on spots in an hour; retries with a 
higher bid price if you lose them

– Losing spots within an hour incurs no cost with Amazon

 Dyna [TCC'16] tries faster spots before falling back to on-demand
– But only if doing so improves the execution time distribution

 Cümülön [PVLDB'15] picks the optimal mix of spot/on-demand instances
– To minimize expected cost while meeting deadline/budget with high probability
– Recovers and re-optimizes if spots are lost

 Cümülön-D [PVLDB'17] adapts proactively dynamically and proactively
– Bids/terminates as needed, based on execution progress and market condition
– Solves the optimization problem as a Markov Decision Process (MDP) and pre-compiles a 

“cookbook” to apply at run time



6-10

Summary

 Large-scale ML is increasingly being done in a cloud

 Challenges of elasticity are not unique to DB & ML

 Lots of uncertainty, but adaption & stochastic modeling 
come to rescue

 Different levels of abstraction 
lead to different opportunities—
declarative (DB-style) ML enables 
smarter, more effective solutions

https://www.quora.com/What-is-the-difference-between-abstract-art-and-modern-art
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Overview: ML Lifecycle Issues
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Feature engineering 
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Model management
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Feature Engineering

The process of obtaining a formal representation of the data-
generating process as structured signals (features) for an ML model

Q: What sort of operations constitute feature engineering?

Q: What is feature engineering (FE)?

Structured data: Whitening, feature selection/ranking, joins, PCA, etc. 
Text: Bag-of-words, Parsing-based, Domain-specific, Word2Vec, etc. 

Deep CNNs and RNNs for images, audio, video, time series, etc.

Depends on the data type!

High-quality features are the “secret sauce” of applied ML 
FE operations are basically data transformations! 

Often “brushed under the carpet” by ML community

Q: Why is it important from a data management perspective?



Feature Engineering Systems
Feature selection:  
Obtain a subset of features to improve accuracy and/or interpretability 

Columbus [SIGMOD’14]:  
Often not a single algorithm but a human-in-the-loop dialogue process 
Data scientist explores multiple subsets based on domain insights

CustID Churn? Age Income Gender City …

… … … … … … …

Understanding  
customer churn

Evaluate error with all features in chosen set 
Drop demographic features and re-evaluate 
Add Gender back in and so on …

A few such common steps encoded as “declarative” ops in DSL 
Impl. on top of R/Python; optimizing code-gen middleware 
Batching/materialization; QR decomposition; coresets; warm start



Feature Engineering Systems

More open questions remain in systematizing feature engineering

Treating FE as a dataflow-oriented process; DB-style optimizations: 
Brainwash [CIDR’13] / DeepDive [DataEng’14] 
Workflows of UDFs; feature recommendations 

KeystoneML [ICDE’17] 
Alternative phy. impl. of solvers; cost-based op. selection 

Reducing amount of work for feature coding/evaluation: 
Zombie [ICDE’16] 
Index structure to sub select relevant data; bandit techniques 

Applying learning theory to skip features and help with sourcing tables: 
Hamlet [SIGMOD’16]
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Model Selection

The process of obtaining a prediction function to capture a data-
generating process using data generated by that process

Q: What is model selection (MS)?

FE, AS, and PT often access the dataset (or subsets) repeatedly 
A lot of opportunities to improve efficiency with DB-style opt. 
FE, AS, and PT are inter-dependent and together constitute MS

Q: Why is it important from a data management perspective?

Model Selection Triple (MST)  
(FE, AS, PT)

MSMS [SIGMODRec’15] FE: Feature Engineering 
AS: Algorithm Selection 
PT: (Hyper-)Parameter Tuning
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Model Selection Triple (MST): (FE, AS, PT)

Data scientists typically think at a higher level of abstraction 
Automation essentially groups MSTs en masse 

MS abstractions can help capture intermediate points

Model Selection Process
MSMS [SIGMODRec’15]

Decide  and code an MST manually

Manage results manually

Next   iteration 3 Consumption

2
Execution

Evaluate model 
 using system

Steering
1



…

Code  
Generation

{FE1, FE2} x AS1 x 
{PT1, PT2}

“Declarative” interfaces

Evaluate models 
 using system

Manage results

Next  iteration

1

2
Optimization

3 Provenance management

Group a set of “logically related” MSTs

Model Selection Process
Model Selection Triple (MST): (FE, AS, PT)MSMS [SIGMODRec’15]

Many old and recent MS abstractions can be “retro-fitted” 
Several new MS abstractions can be introduced to co-exist



Autotuned  
functions Columbus MLBase

The Higher Layers: Declarative Interfaces (some in hindsight!)

The Lower Layers: Optimized Implementations

{ {FE} x {AS} x {PT} }

New Abstractions

FE x AS x {PT} {FE} x AS x PT FE x {AS1 x {PT},  
AS2 x {PT}} {FE} x {AS x PT}, …

E.g., glmnet() in R E.g., StepAdd() E.g., doClassify() …

In-memory In-RDBMS Others

The Narrow Waist: 
A set of logically related 

Model Selection Triples (MST)

Model Selection Management Systems (MSMS)
MSMS [SIGMODRec’15]



Model Selection Systems

Many open questions remain on optimizing/improving model selection 
Interactions of PT with AS and FE 
Exploiting redundancy across and within MSTs; cost models 
Incorporating constraint/approximations and visualizations, etc.

Automation of AS and PT search with pre-defined search space: 
MLbase [CIDR’13] / TuPAQ [SoCC’15] 
Declarative ML tasks (e.g., “DoClassify”); fixed set of algorithms 
Data batching; bandit techniques for explore-exploit search 

Hemingway [MLSys’16] 
Joint AS and cluster sizing for optimization algorithms 
Observe-and-adapt approach for convergence properties 

DB-style optimizations for PT and general meta-learning: 
SystemML [ICDE’15]; GLADE [DanaC’12]
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Model Management Systems

Treating trained models as data themselves (store, query, debug, etc.)

Q: What is model management?

Integrating ML models with SQL querying: LongView [CIDR’11] 

Iterative ML debugging: MindTagger [VLDB’15], PALM [HILDA’17] 

Specialized storage engines and custom optimizations: 
ModelHub [ICDE’17] 
Versioned storage/retrieval of CNNs (sets of float matrices) 
Optimizations for reducing storage footprint

Many open questions on managing large space of MSTs, especially for 
large models (DNNs/trees); ML provenance and debugging
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