
Differential Privacy in the Wild
(Part 2)

A Tutorial on Current Practices and Open Challenges



Outline of  the Tutorial

1. What is Privacy?
2. Differential Privacy
3. Answering Queries on Tabular Data

Break
4. Applications I: Machine Learning
5. Privacy in the Real World
6. Applications II: Networks and Trajectories
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MODULE 4:
APPLICATIONS I: MACHINE 
LEARNING
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Module 4: Applications I

• Private Empirical Risk Minimization
– E.g. SVM, logistic regression 
–Make a specific learning approach private

• Private Stochastic Gradient Descent
– E.g. Deep learning
–Make a general purposed fitting technique private 

• Other Important Problems in Private Learning
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Differentially Private Machine Learning

Predicts flu or not, based on patient symptoms
Trained on sensitive patient data
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From Attributes to Labeled Data
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Yes No 99F No

Sore Throat Fever Temperature Flu?

1 0 99 -
Data Label
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Classifying Sensitive Data
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Classifying Sensitive Data
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Distribution 𝑃 over 
labelled examples

Goal: Find a vector 𝑤	that separates + from - for 
most points from 𝑃

Key: Find a simple model to fit the samples
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Empirical Risk Minimization

• Training dataset: 
– Labeled data 𝐷 = 𝑥𝑖, 𝑦𝑖 ∈ 𝑋×𝑌: 𝑖 = 1,2, … , 𝑛
– e.g binary classification 𝑋 = 𝑅4 ,  𝑌 = {−1,+1}
– Train predictor over 𝐷:  𝜔:𝑋 → 𝑌

• Empirical risk (or error) of  𝜔	over 𝐷 is 
1
𝑛;𝑙(𝜔, (𝑥>, 𝑦>))

@

>AB
– 𝑙	 is a loss function: how well 𝜔 classifies (𝑥>, 𝑦>)
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Examples of  Loss Function
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+- ------- -

+
++
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+

Risk: Hinge loss  𝑙 𝑧 = max	(0,1 − 𝑧)
Optimizer: Support vector machines (SVM)

Risk: Logistic loss  𝑙 𝑧 = log	(1 + exp −𝑧 )
Optimizer: Logistic regression
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Regularized ERM

• Goal: Labeled data 𝐷 = {(𝑥𝑖, 𝑦𝑖)}, find 

𝑓 𝐷 = 𝑎𝑟𝑔𝑚𝑖𝑛R 	
1
2 𝜆 ∥ 𝜔 ∥U +

1
𝑛;𝑙(𝜔, 𝑥>, 𝑦> )

@

>AB

11

Regularizer
(Model Complexity)

Risk
(Training Error)
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Why ERM is not private for 
Support Vector Machine (SVM)?
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SVM solution is a combination of  support vectors
If  one support vector moves, solution changes
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Why ERM is not private for 
Support Vector Machine (SVM)?
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SVM solution is a combination of  support vectors
If  one support vector moves, solution changes
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Module 4: Applications I

• Private Empirical Risk Minimization
– E.g. SVM, logistic regression 
–Make a specific learning approach private

• Private Stochastic Gradient Descent
– E.g Deep learning
–Make a general purposed fitting technique private 

• Other Important Problems in Private Learning
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How to make ERM private?
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Pick 𝜔 from distribution 
near the optimal solution
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Output Perturbation

• Goal:
𝑓V 𝐷 = 𝑓 𝐷 + 𝑛𝑜𝑖𝑠𝑒 =

Z𝑎𝑟𝑔𝑚𝑖𝑛R 	
1
2 𝜆 ∥ 𝜔 ∥U +

1
𝑛;𝑙(𝜔, 𝑥>, 𝑦> )

@

>AB

[ + 𝑛𝑜𝑖𝑠𝑒

Theorem: [CMS11] If  ∥ 𝑥> ∥≤ 1 and 𝑙 is 1-Lipschitz, 
then for any 𝐷,𝐷′ with dist 𝐷, 𝐷b = 1, 

||𝑓 𝐷 − 𝑓(𝐷b)||U ≤ 	
U
d@

(𝐿U-sensitivity)
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Output Perturbation

• Goal:
𝑓V 𝐷 = 𝑓 𝐷 + 𝑛𝑜𝑖𝑠𝑒 =

Z𝑎𝑟𝑔𝑚𝑖𝑛R 	
1
2 𝜆 ∥ 𝜔 ∥U +

1
𝑛;𝑙(𝜔, 𝑥>, 𝑦> )

@

>AB

[ + 𝑛𝑜𝑖𝑠𝑒

• Laplace 𝑛𝑜𝑖𝑠𝑒 drawn from

–Magnitude: drawn from Γ(d, U
d@g
)

– Direction: uniform at random
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Property of  Real Data

18

-

-
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+

Perturbation

Loss

Optimization surface is very steep in some direction
à High loss if  perturbed in those directions
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Objective Perturbation

• Insight: Perturb optimization surface and then 
optimize

𝑓V 𝐷 =

𝑎𝑟𝑔𝑚𝑖𝑛R 	Z
1
2 𝜆 ∥ 𝜔 ∥U +

1
𝑛;𝑙(𝜔, 𝑥>, 𝑦> )

@

>AB

+ 𝑛𝑜𝑖𝑠𝑒[

• Main idea: add noise as part of  the computation: 
– Regularization already changes the objective to protects 

against overfitting.
– Change the objective a little bit more to protect privacy. 
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Objective Perturbation

• Insight: Perturb optimization surface and then 
optimize

𝑓V 𝐷 =

𝑎𝑟𝑔𝑚𝑖𝑛R 	Z
1
2 𝜆 ∥ 𝜔 ∥U +

1
𝑛;𝑙(𝜔, 𝑥>, 𝑦> )

@

>AB

+ 𝑛𝑜𝑖𝑠𝑒[

• 𝑛𝑜𝑖𝑠𝑒 drawn from
– Magnitude: drawn from Γ(d, Bg)
– Direction: uniform at random
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Objective Perturbation

• Insight: Perturb optimization surface and then 
optimize

𝑓V 𝐷 =

𝑎𝑟𝑔𝑚𝑖𝑛R 	Z
1
2 𝜆 ∥ 𝜔 ∥U +

1
𝑛;𝑙(𝜔, 𝑥>, 𝑦> )

@

>AB

+ 𝑛𝑜𝑖𝑠𝑒[

• Theorem: If  𝑙 is convex and double-differentiable 
with 𝑙′ z ≤ 1, 𝑙bb z ≤ 𝑐 then Algorithm 
satisfy 𝜖 + 2 log 1 + k

@d
-DP. [CMS11]
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Accuracy

22

• Number of  samples for error 𝛼 w.r.t the best predictor
– Fewer samples implies higher accuracy

• Normal SVM:                       B
mn U

• Objective perturbation:        B
mn U +

4
mgn

• Output perturbation:            B
mn U +

4
mo.qgn

𝑑: #dimensions
𝛾: margin
𝜖: privacy
𝛼: error
𝛾, 𝛼, 𝜖 < 1
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Module 4: Applications I

• Private Empirical Risk Minimization
– E.g. SVM, logistic regression 
–Make a specific learning approach private

• Private Stochastic Gradient Descent
– E.g. Deep learning
–Make a general purposed fitting technique private 

• Other Important Problems in Private Learning
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Stochastic Gradient Descent (SGD)

• Initial 𝜔u
• Incremental gradient update for 𝑡 = 0…𝑇 − 1
– Take a random example 𝑥x, 𝑦x ∈ 𝐷
– Update 𝜔xyB = 𝜔x − 𝜂x(𝛻𝑙 𝜔x, 𝑥x, 𝑦x )

• 𝜂x is the step size

• Permutation-based SGD (PSGD)
– Randomly permute training examples 𝐷 = {(𝑥𝑖, 𝑦𝑖)} to 

feed each pass of  SGD
– Cycle 𝐷 for 𝑘 times: 𝑘-pass PSGD
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White Box Approaches

• Initial 𝜔u
• Incremental gradient update for 𝑡 = 0…𝑇 − 1
– Take a random example 𝑥x, 𝑦x ∈ 𝐷
– Update 𝜔xyB = 𝜔x − 𝜂x(𝛻𝑙 𝜔x, 𝑥x, 𝑦x + 𝑛𝑜𝑖𝑠𝑒)

• 𝜂x is the step size

• Permutation-based SGD (PSGD)
– Randomly permute training examples 𝐷 = {(𝑥𝑖, 𝑦𝑖)} to 

feed each pass of  SGD
– Cycle 𝐷 for 𝑘 times: 𝑘-pass PSGD
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White Box Approaches

• Cycle 𝐷 for 𝑘 times
• Basic composition:
– Each pass is 𝜖-DP, then 𝑘-pass is 𝜖𝑘-DP.
– Privacy loss grows linearly with the number of  

passes. [CSC13, SS15]

• Tighter privacy loss with advanced composition
– Convex objectives [JKT12, BST14]
– Deep learning with non-convex objectives [ACG16]
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Advanced Composition 

• Composing 𝑘 algorithms, each satisfying 𝜖-DP 
ensures 𝜖}-DP with probability 1 − 𝛿

𝜖} = 𝑂 𝜖	 𝑘 ln B
�

� + 𝑘𝜖U

• Analyze privacy loss as a random variable: given 
output 𝑜 and neighbors 𝐷,𝐷b

𝑃𝐿 𝑜 = ln ��	[� � A�]
��	[� �� A�]
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Advanced Composition 

• Composing 𝑘 algorithms, each satisfying 𝜖-DP 
ensures 𝜖}-DP with probability 1 − 𝛿

𝜖} = 𝑂 𝜖	 𝑘 ln B
�

� + 𝑘𝜖U

• Each algorithm has privacy loss 𝑃𝐿(𝑜)
– Worst case (DP): Pr 𝑃𝐿 𝑜 ≤ 𝜖 = 1
– Expected loss: E 𝑃𝐿(𝑜) ≤ 𝜖(𝑒g−1)
– Total privacy loss 𝜖} is bounded by Azuma’s inequality

Module 4 Tutorial: Differential Privacy in the Wild 28

[DRV10]



Black Box Approaches

• Add noise to the final output of  SGD [WLK17]
– No need code change to the SGD program
– Only sample noise once 
– Allow 𝜖-DP and (𝜖, 𝛿)-DP
– Better convergence for constant number of  

passes	based on the new bound over 𝐿U sensitivity 
of  𝑘-pass PSGD

Module 4 Tutorial: Differential Privacy in the Wild 29

Initialize 𝜔u
For 𝑡	 = 	0…𝑇 − 1

𝜔xyB ←	update 𝜔x
Output 𝜔�

𝜔� ← 𝜔� + noise

“Bolt-on DP” 
@ Thursday 2 PM DP Session)



𝐿U sensitivity of  𝑘-pass PSGD

• 𝑙 is 𝛽-smooth and 𝐿-Lipschitz, the 𝐿U sensitivity is 

– 2𝑘𝐿𝜂 if  𝑙 is convex, 𝜂x = 𝜂 ≤ U
�

– U�
d@ if  𝑙 is 𝜆-strongly convex, 𝜂x = min(B� ,

B
dx), |𝐷| = 𝑛

– Convergence when 𝑘 = 𝑂(1)
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[WLK17] (black box) [BST14] (white box)
Convex

𝑂(
𝑑�

𝑛�
) 𝑂(

𝑑� 	log
�
U 𝑛

𝑛�
)

Strongly 
convex 𝑂(

𝑑� log 𝑛
𝑛 ) 𝑂(

𝑑 logU 𝑛
𝑛 )



Other Fitting Techniques

• Mini-batching SGD 
– At step 𝑡, the gradient is updated with a batch of  

examples 𝐵x from 𝐷
– Add noise per iteration

• 𝜔xyB = 𝜔x − 𝜂x(𝐸 ��,�� ∈��𝛻𝑙 𝜔x, 𝑥>, 𝑦> + 𝑛𝑜𝑖𝑠𝑒)
– Or add noise to the final output 

• Proximal algorithm for strongly convex 
optimization [JKT12]
– Add noise per iteration 
– Hard to implement than SGD

Module 4 Tutorial: Differential Privacy in the Wild 31



Module 4: Applications I

• Private Empirical Risk Minimization
– E.g. SVM, logistic regression 
–Make a specific learning approach private

• Private Stochastic Gradient Descent
– E.g. Deep learning
–Make a general purposed fitting technique private 

• Other Important Problems in Private Learning
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Other Important Problems
• Practical issues
– Parameter tuning: exponential mechanism [CMS11]
– High dimensional data: random projection [WLK17]

• Solve non-convex optimization
– Deep learning [SS15, ACG16]

• Understand what can be learned privately [KLNR11]
– Private learning w/o efficiency: PAC, SQ
– What cannot be learned privately? e.g. threshold functions 

where hypothesis space is infinite
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DP Algorithms for ML

• Private ERM– a specific learning approach

• Private SGD – a fitting technique
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Output perturbation               Objective perturbation 

White box approaches              Black box approaches

argmin (objective) + noise argmin (objective + noise) 

Initialize 𝜔u
For 𝑡	 = 	0…𝑇 − 1

𝜔xyB ←	update 𝜔x
𝜔xyB ← 	𝜔xyB + noise

Output 𝜔�

Initialize 𝜔u
For 𝑡	 = 	0…𝑇 − 1

𝜔xyB ←	update 𝜔x
Output 𝜔�

𝜔� ← 𝜔� + noise



MODULE 5:
PRIVACY IN THE REAL WORLD
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Module 5: Privacy in the real world

• Real world deployments of  differential privacy

– OnTheMap RAPPOR

• Privacy beyond Tabular Data
– No Free Lunch Theorem
– Customizing differential privacy using Pufferfish

Tutorial: Differential Privacy in the Wild 36Module 5



Tutorial: Differential Privacy in the Wild 37

http://onthemap.ces.census.gov/
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Data underlying OnTheMap
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• Employee
– Age 
– Sex
– Race & Ethnicity
– Education
– Home location (Census block)

• Employer
– Geography (Census blocks)
– Industry
– Ownership (Public vs Private)

• Job
– Start date
– End date
– Worker & Workplace IDs
– Earnings



Why release such data?
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Why privacy is needed?
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US Code: Title 13 CENSUS

It is against the law to make any publication whereby 
the data furnished by any particular establishment or 

individual under this title can be identified.

Violating the statutory confidentiality pledge can result 
in fines of  up to $250,000 and potential imprisonment 

for up to five years.
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OnTheMap

Tutorial: Differential Privacy in the Wild 41

Worker ID Origin Destination

1223 MD11511 DC22122

1332 MD2123 DC22122

1432 VA11211 DC22122

2345 PA12121 DC24132

1432 PA11122 DC24132

1665 MD1121 DC24132

1244 DC22122 DC22122

Census Blocks

Residence
(Sensitive)

Workplace
(Quasi-identifier)
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Current approach: Synthetic Database

• Sanitize the dataset one time
• Analyst can perform arbitrary computations on 

the synthetic datasets

• Unlike in query answering systems
– No need to maintain state (of  queries asked)
– No need to track privacy loss across queries or 

across analysts
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Synthetic Residence Generator 
(circa 2007)
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Origin Destination # 
Workers

MD1151
1

DC22122 1

MD2123 DC22122 3

VA11211 DC22122 12

PA12121 DC24132 43

PA11122 DC24132 5

MD1121 DC24132 2

DC22122 DC22122 1

+

Noise

2

0

1

2

1

9

0

+ Dirichlet
Resampling

No noise is added to origin-destination pairs with true count 0
Can lead to re-identification attacks. 



Differentially Private Synthetic Data 
Generator

• Noise added to all origin-destination (o-d) pairs
– Even if  0 count in the original dataset

• Noise calibrated to ensure a variant called 
probabilistic differential privacy

• Utility ensured by coarsening the domain and 
probabilistically dropping o-d pairs with no 
support.
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Evaluation

• Utility measured by average commute distance for each 
destination block.
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Experimental Setup:
• OTM: Currently published 

OnTheMap data used as original data. 
• All destinations in Minnesota.
• 120,690 origins per destination. 

• chosen by pruning out blocks that are > 
100 miles from the destination. 

• Total ε = 8.3, δ = 10-5
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Module 5: Privacy in the real world

• Real world deployments of  differential privacy

– OnTheMap RAPPOR

• Privacy beyond Tabular Data
– No Free Lunch Theorem
– Customizing differential privacy using Pufferfish
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A dilemma

• Cloud services want to protect their users, 
clients and the service itself  from abuse. 

• Need to monitor statistics of, for instance, 
browser configurations. 
– Did a large number of  users have their home page 

redirected to a malicious page in the last few hours?

• But users do not want to give up their data
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Browser configurations can identify users 
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Problem
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Finance.com
Fashion.com

WeirdStuff.com

. . .

What are the frequent unexpected
Chrome homepage domains?

àTo learn malicious software 
that change Chrome setting 
without users’ consent 

[Erlingsson et al CCS’14]
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Why privacy is needed?
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Finance.com
Fashion.com

WeirdStuff.com

. . .

Storing unperturbed sensitive 
data makes server 
accountable (breaches, 
subpoenas, privacy policy 
violations)

Liability (for server)

Module 5



Solution

Can use Randomized Response …

On a binary domain: 
With probability p report true value
With probability 1-p report false value

… but the domain of  all urls is very large …
… original value is  reported with very low prob.
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RAPPOR Solution

• Idea 1: Use bloom filters to reduce the domain size
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Finance.com

Module 5

Bloom filter bits

Participant 8456 in cohort 1

1 8 32 64 128 256

"The number 68"

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 signal bits

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
69 bits on

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
145 bits on

True value:

Bloom filter (B):

Fake Bloom 
 filter (B'):

Report sent
 to server:

0 1

Figure 1: Life of a RAPPOR report: The client value of the string “The number 68” is hashed onto the Bloom
filter B using h (here 4) hash functions. For this string, a Permanent randomized response B0 is produces and
memoized by the client, and this B0 is used (and reused in the future) to generate Instantaneous randomized
responses S (the bottom row), which are sent to the collecting service.

To provide such strong privacy guarantees, the RAPPOR
algorithm implements two separate defense mechanisms, both
of which are based on the idea of randomized response and
can be separately tuned depending on the desired level of
privacy protection at each level. Furthermore, additional
uncertainty is added through the use of Bloom filters which
serve not only to make reports compact, but also to compli-
cate the life of any attacker (since any one bit in the Bloom
filter may have multiple data items in its pre-image).

The RAPPOR algorithm takes in the client’s true value v
and parameters of execution k, h, f, p, q, and is executed lo-
cally on the client’s machine performing the following steps:

1. Signal. Hash client’s value v onto the Bloom filter B
of size k using h hash functions.

2. Permanent randomized response. For each client’s
value v and bit i, 0  i < k in B, create a binary re-
porting value B0

i which equals to

B0
i =

8
><

>:

1, with probability 1
2f

0, with probability 1
2f

Bi, with probability 1� f

where f is a user-tunable parameter controlling the
level of longitudinal privacy guarantee.

Subsequently, this B0 is memoized and reused as the
basis for all future reports on this distinct value v.

3. Instantaneous randomized response. Allocate a
bit array S of size k and initialize to 0. Set each bit i
in S with probabilities

P (Si = 1) =

(
q, if B0

i = 1.

p, if B0
i = 0.

4. Report. Send the generated report S to the server.

There are many di↵erent variants of the above randomized
response mechanism. Our main objective for selecting these

two particular versions was to make the scheme intuitive and
easy to explain.

The Permanent randomized response (step 2) replaces the
real value B with a derived randomized noisy value B0. B0

may or may not contain any information about B depend-
ing on whether signal bits from the Bloom filter are being
replaced by random 0’s with probability 1

2f . The Perma-
nent randomized response ensures privacy because of the
adversary’s limited ability to di↵erentiate between true and
“noisy” signal bits. It is absolutely critical that all future
reporting on the information about B uses the same ran-
domized B0 value to avoid an “averaging” attack, in which
an adversary estimates the true value from observing multi-
ple noisy versions of it.

The Instantaneous randomized response (step 3) plays
several important functions. Instead of directly reporting
B0 on every request, the client reports a randomized version
of B0. This modification significantly increases the di�culty
of tracking a client based on B0, which could otherwise be
viewed as a unique identifier in longitudinal reporting sce-
narios. It also provides stronger short-term privacy guaran-
tees (since we are adding more noise to the report) which can
be independently tuned to balance short-term vs long-term
risks. Through tuning of the parameters of this mechanism
we can e↵ectively balance utility against di↵erent attacker
models.

Figure 1 shows a random run of the RAPPOR algorithm.
Here, a client’s value is v = “68”, the size of the Bloom fil-
ter is k = 256, the number of hash functions is h = 4, and
the tunable randomized response parameters are: p = 0.5,
q = 0.75, and f = 0.5. The reported bit array sent to the
server is shown at the bottom of the figure. 145 out of 256
bits are set in the report. Of the four Bloom filter bits in B
(second row), two are propagated to the noisy Bloom filter
B0. Of these two bits, both are turned on in the final report.
The other two bits are never reported on by this client due
to the permanent nature of B0. With multiple collections
from this client on the value“68”, the most powerful attacker
would eventually learn B0 but would continue to have lim-



RAPPOR Solution

• Idea 2: Use RR on bloom filter bits
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Finance.com

Module 5

Bloom filter bits

Participant 8456 in cohort 1

1 8 32 64 128 256

"The number 68"
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145 bits on

True value:

Bloom filter (B):

Fake Bloom 
 filter (B'):

Report sent
 to server:

0 1

Figure 1: Life of a RAPPOR report: The client value of the string “The number 68” is hashed onto the Bloom
filter B using h (here 4) hash functions. For this string, a Permanent randomized response B0 is produces and
memoized by the client, and this B0 is used (and reused in the future) to generate Instantaneous randomized
responses S (the bottom row), which are sent to the collecting service.

To provide such strong privacy guarantees, the RAPPOR
algorithm implements two separate defense mechanisms, both
of which are based on the idea of randomized response and
can be separately tuned depending on the desired level of
privacy protection at each level. Furthermore, additional
uncertainty is added through the use of Bloom filters which
serve not only to make reports compact, but also to compli-
cate the life of any attacker (since any one bit in the Bloom
filter may have multiple data items in its pre-image).

The RAPPOR algorithm takes in the client’s true value v
and parameters of execution k, h, f, p, q, and is executed lo-
cally on the client’s machine performing the following steps:

1. Signal. Hash client’s value v onto the Bloom filter B
of size k using h hash functions.

2. Permanent randomized response. For each client’s
value v and bit i, 0  i < k in B, create a binary re-
porting value B0

i which equals to

B0
i =

8
><

>:

1, with probability 1
2f

0, with probability 1
2f

Bi, with probability 1� f

where f is a user-tunable parameter controlling the
level of longitudinal privacy guarantee.

Subsequently, this B0 is memoized and reused as the
basis for all future reports on this distinct value v.

3. Instantaneous randomized response. Allocate a
bit array S of size k and initialize to 0. Set each bit i
in S with probabilities

P (Si = 1) =

(
q, if B0

i = 1.

p, if B0
i = 0.

4. Report. Send the generated report S to the server.

There are many di↵erent variants of the above randomized
response mechanism. Our main objective for selecting these

two particular versions was to make the scheme intuitive and
easy to explain.

The Permanent randomized response (step 2) replaces the
real value B with a derived randomized noisy value B0. B0

may or may not contain any information about B depend-
ing on whether signal bits from the Bloom filter are being
replaced by random 0’s with probability 1

2f . The Perma-
nent randomized response ensures privacy because of the
adversary’s limited ability to di↵erentiate between true and
“noisy” signal bits. It is absolutely critical that all future
reporting on the information about B uses the same ran-
domized B0 value to avoid an “averaging” attack, in which
an adversary estimates the true value from observing multi-
ple noisy versions of it.

The Instantaneous randomized response (step 3) plays
several important functions. Instead of directly reporting
B0 on every request, the client reports a randomized version
of B0. This modification significantly increases the di�culty
of tracking a client based on B0, which could otherwise be
viewed as a unique identifier in longitudinal reporting sce-
narios. It also provides stronger short-term privacy guaran-
tees (since we are adding more noise to the report) which can
be independently tuned to balance short-term vs long-term
risks. Through tuning of the parameters of this mechanism
we can e↵ectively balance utility against di↵erent attacker
models.

Figure 1 shows a random run of the RAPPOR algorithm.
Here, a client’s value is v = “68”, the size of the Bloom fil-
ter is k = 256, the number of hash functions is h = 4, and
the tunable randomized response parameters are: p = 0.5,
q = 0.75, and f = 0.5. The reported bit array sent to the
server is shown at the bottom of the figure. 145 out of 256
bits are set in the report. Of the four Bloom filter bits in B
(second row), two are propagated to the noisy Bloom filter
B0. Of these two bits, both are turned on in the final report.
The other two bits are never reported on by this client due
to the permanent nature of B0. With multiple collections
from this client on the value“68”, the most powerful attacker
would eventually learn B0 but would continue to have lim-



RAPPOR Solution

• Idea 3: Again use RR on the Fake bloom filter
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Bloom filter bits

Participant 8456 in cohort 1

1 8 32 64 128 256

"The number 68"
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145 bits on

True value:

Bloom filter (B):

Fake Bloom 
 filter (B'):

Report sent
 to server:

0 1

Figure 1: Life of a RAPPOR report: The client value of the string “The number 68” is hashed onto the Bloom
filter B using h (here 4) hash functions. For this string, a Permanent randomized response B0 is produces and
memoized by the client, and this B0 is used (and reused in the future) to generate Instantaneous randomized
responses S (the bottom row), which are sent to the collecting service.

To provide such strong privacy guarantees, the RAPPOR
algorithm implements two separate defense mechanisms, both
of which are based on the idea of randomized response and
can be separately tuned depending on the desired level of
privacy protection at each level. Furthermore, additional
uncertainty is added through the use of Bloom filters which
serve not only to make reports compact, but also to compli-
cate the life of any attacker (since any one bit in the Bloom
filter may have multiple data items in its pre-image).

The RAPPOR algorithm takes in the client’s true value v
and parameters of execution k, h, f, p, q, and is executed lo-
cally on the client’s machine performing the following steps:

1. Signal. Hash client’s value v onto the Bloom filter B
of size k using h hash functions.

2. Permanent randomized response. For each client’s
value v and bit i, 0  i < k in B, create a binary re-
porting value B0

i which equals to

B0
i =

8
><

>:

1, with probability 1
2f

0, with probability 1
2f

Bi, with probability 1� f

where f is a user-tunable parameter controlling the
level of longitudinal privacy guarantee.

Subsequently, this B0 is memoized and reused as the
basis for all future reports on this distinct value v.

3. Instantaneous randomized response. Allocate a
bit array S of size k and initialize to 0. Set each bit i
in S with probabilities

P (Si = 1) =

(
q, if B0

i = 1.

p, if B0
i = 0.

4. Report. Send the generated report S to the server.

There are many di↵erent variants of the above randomized
response mechanism. Our main objective for selecting these

two particular versions was to make the scheme intuitive and
easy to explain.

The Permanent randomized response (step 2) replaces the
real value B with a derived randomized noisy value B0. B0

may or may not contain any information about B depend-
ing on whether signal bits from the Bloom filter are being
replaced by random 0’s with probability 1

2f . The Perma-
nent randomized response ensures privacy because of the
adversary’s limited ability to di↵erentiate between true and
“noisy” signal bits. It is absolutely critical that all future
reporting on the information about B uses the same ran-
domized B0 value to avoid an “averaging” attack, in which
an adversary estimates the true value from observing multi-
ple noisy versions of it.

The Instantaneous randomized response (step 3) plays
several important functions. Instead of directly reporting
B0 on every request, the client reports a randomized version
of B0. This modification significantly increases the di�culty
of tracking a client based on B0, which could otherwise be
viewed as a unique identifier in longitudinal reporting sce-
narios. It also provides stronger short-term privacy guaran-
tees (since we are adding more noise to the report) which can
be independently tuned to balance short-term vs long-term
risks. Through tuning of the parameters of this mechanism
we can e↵ectively balance utility against di↵erent attacker
models.

Figure 1 shows a random run of the RAPPOR algorithm.
Here, a client’s value is v = “68”, the size of the Bloom fil-
ter is k = 256, the number of hash functions is h = 4, and
the tunable randomized response parameters are: p = 0.5,
q = 0.75, and f = 0.5. The reported bit array sent to the
server is shown at the bottom of the figure. 145 out of 256
bits are set in the report. Of the four Bloom filter bits in B
(second row), two are propagated to the noisy Bloom filter
B0. Of these two bits, both are turned on in the final report.
The other two bits are never reported on by this client due
to the permanent nature of B0. With multiple collections
from this client on the value“68”, the most powerful attacker
would eventually learn B0 but would continue to have lim-

Why randomize two times? 

- Chrome collects information each day

- Want perturbed values to look different 
on different days to avoid linking



Server Report Decoding

• Step 5: estimates bit frequency from reports 𝑓V(𝐷)
• Step 6: estimate frequency of  candidate strings with 

regression from 𝑓V(𝐷)
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Finance.com Fashion.com WeirdStuff.com

. . .

1 1 0 1 0 0 0 1 0 1

0 1 0 1 0 0 0 1 0 0

. . .

0 1 0 1 0 0 0 1 0 1

23 12 12 12 12 2 3 2 1 10

𝑓V(𝐷)
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Evaluation
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http://google.github.io/rappor/examples/report.html
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Other Real World Deployments
• Differentially private password Frequency lists [Blocki et al. NDSS ‘16]

– release a corpus of  50 password frequency lists representing 
approximately 70 million Yahoo! users 

– varies from 8 to 0.002 
• Human Mobility [Mir et al. Big Data ’13 ]

– synthetic data to estimate commute patterns from call detail records 
collected by AT&T

– 1 billion records ~ 250,000 phones 
• Apple will use DP [Greenberg.  Wired Magazine ’16]

– in iOS 10 to collect data to improve QuickType and emoji suggestions, 
Spotlight deep link suggestions, and Lookup Hints in Notes

– in macOS Sierra to improve autocorrect suggestions and Lookup Hints
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Module 5: Privacy in the real world

• Real world deployments of  differential privacy

– OnTheMap RAPPOR

• Privacy beyond Tabular Data
– No Free Lunch Theorem
– Customizing differential privacy using Pufferfish
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Differential Privacy & Complex Datatypes

• Defining neighboring databases
–What is a record? 

• Records can be correlated
– Unravels privacy guarantee
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Graphs

Neighboring databases … differ in one record. 

• In graphs, a record can be:
– An edge (u,v)
– The adjacency list of  node u
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Trajectories

Neighboring databases … differ in one record. 

• In location trajectories, a record can be:
– Each location in the trajectory
– A sequence of  locations spanning a window of  time
– The entire trajectory
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US Census Bureau Data

Module 5 Tutorial: Differential Privacy in the Wild 62

• Employee
– Age 
– Sex
– Race & Ethnicity
– Education
– Home location (Census block)

• Employer
– Geography (Census blocks)
– Industry
– Ownership (Public vs Private)

• Job
– Start date
– End date
– Worker & Workplace IDs
– Earnings



US Census Bureau Data

Neighboring databases … differ in one record. 

• A record can be:
– An employee
– An employer
– Something else?
• Come to talk on Thursday
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Existing LODES Data as Presented in the OnTheMap Web
Tool

Employment in Lower Manhattan Residences of Workers Employed in
Lower Manhattan

Available at http://onthemap.ces.census.gov/.

Samuel Haney The Cost of Provable Privacy: A Case Study on Linked Employer-Employee DataJune 23, 2016 4 / 19



Differential Privacy & Complex Datatypes

• Defining neighboring databases
–What is a record? 

• Records can be correlated
– Unravels privacy guarantee
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Correlations and DP

• Want to release the number of  edges between blue
and green communities.

• Should not disclose the presence/absence of  Bob-
Alice edge. 

65

Bob Alice

Tutorial: Differential Privacy in the Wild

[KM11]
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Adversary knows how social networks evolve

66

Depending on the social network evolution model, 
(d2-d1) is linear or even super-linear in the size of  the network.                 

Tutorial: Differential Privacy in the Wild

[KM11]
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Differential privacy fails to avoid breach

67

Output   (d1 + δ)

Output   (d2 + δ)

δ ~	Laplace(1/ε)	

Adversary can distinguish between the two 
worlds if  d2 – d1 is large.  

Tutorial: Differential Privacy in the Wild

[KM11]
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Reason for Privacy Breach

68

• Pairs of  tables that differ   
in one tuple

• cannot distinguish them

Tables that do not 
satisfy background 

knowledge

Space of  all 
possible tables

Tutorial: Differential Privacy in the Wild

[KM11]
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Reason for Privacy Breach

69

can distinguish between 
every pair of  these tables based 

on the output

Space of  all 
possible tables

Tutorial: Differential Privacy in the Wild

[KM11]
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No Free Lunch Theorem

It is not possible to guarantee any utility in addition 
to privacy, without making assumptions about 

• the data generating distribution 

• the background knowledge available 
to an adversary

70

[KM11]

Tutorial: Differential Privacy in the Wild

[DN	10]
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Need a formal theory to understand the 
privacy ensured by DP
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Pufferfish
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[KM12, KM14]
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Pufferfish Semantics

• What is being kept secret? 

• Who are the adversaries?

• How is information disclosure bounded? 
– (similar to epsilon in differential privacy)
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Sensitive Information

• Secrets: S be a set of  potentially sensitive statements
– “individual j’s record is in the data, and j has Cancer”
– “individual j’s record is not in the data”

• Discriminative Pairs: 
Mutually exclusive pairs of  secrets. 
– (“Bob is in the table”, “Bob is not in the table”)
– (“Bob has cancer”, “Bob has diabetes”)

– Denotes an adversary’s possible beliefs about a target individual. 
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Adversaries
• We assume a Bayesian adversary who is can be completely 

characterized by his/her prior information about the data
– We do not assume computational limits

• Data Evolution Scenarios: set of  all probability distributions 
that could have generated the data ( … think adversary’s prior).

– No assumptions:  All probability distributions over data instances are 
possible. 

– I.I.D.: Set of  all f such that: P(data = {r1, r2, …, rk}) = f(r1) x f(r2) 
x…x f(rk)
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Information Disclosure

• Mechanism M satisfies ε-Pufferfish(S, Spairs, D), if  
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Pufferfish Semantic Guarantee

Tutorial: Differential Privacy in the Wild 77

Prior odds of  
s vs s’

Posterior odds 
of   s vs s’
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Customizing Privacy

• Setup secrets and discriminative pairs based on 
the requirements of  what must be kept secret

• Set up data generating distributions to capture 
correlations known to the adversary

• Pufferfish results in privacy definition that 
bounds the adversary’s posterior and prior odds 
for every discriminative pair. 
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Advantages

• Privacy defined more generally in terms of  
customizable secrets rather than records 
– Better capture legal privacy policies

• Can better explore privacy-utility tradeoff  by 
varying secrets and adversaries
– See application to US Census Bureau Data 

(Thursday 2PM DP Session)

• Gives a deeper understanding of  the protections 
afforded by existing privacy definition
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!!! !

Pufferfish & Differential Privacy

• Discriminative Pairs: 
– : record i takes the value x 
– : record i is not in the database
–

• Attackers should not be able to tell whether a 
record is in or out of  the database 
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Pufferfish & Differential Privacy

• Data evolution: 
– For all θ = [ f1, f2, f3, …, fk ]

• Adversary’s prior may be any distribution that 
makes records independent
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Pufferfish & Differential Privacy
• Discriminative Pairs: 
–

• Data evolution: 
– For all θ = [ f1, f2, f3, …, fk ]

A mechanism M satisfies differential privacy 
if  and only if  

it satisfies Pufferfish instantiated using Spairs and {θ} 
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Challenges with Pufferfish

• Setting up data generating distributions are tricky
– Adversary’s knowledge is unknown

• Little work on algorithm design for Pufferfish
– Notable Exceptions:  Blowfish (next module), and 

Wasserstein mechanism (Thursday 2 PM DP Session)

• Not all Pufferfish definitions are “good”
–Many do not satisfy composition
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Summary

• Complex datatypes require custom privacy definitions
– No Free Lunch theorem
– Varied notions of  neighboring databases
– Correlations can unravel privacy ensured by DP algorithms

• Pufferfish is a mathematical framework for defining 
privacy
– A rigorous way to customize privacy to applications
– Helps understand semantics of  privacy definitions
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MODULE 6: 
APPLICATIONS II: NETWORK & 
TRAJECTORIES 
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Module 6: Applications II

• Pufferfish Privacy for Non-tabular Data

• Blowfish Privacy
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Social network Location trajectories
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Pufferfish Semantics

• What is being kept secret? 

• Who are the adversaries?

• How is information disclosure bounded? 
– (similar to epsilon in differential privacy)
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Examples: Graphs
• Neighboring graphs differ in presence/absence of  one edge

• Pufferfish meaning: 
– Data: matrix of  bits
– Secrets: whether or not an edge (𝑢, 𝑣) is in the graph -- bit at 
(𝑢, 𝑣) is 0 or 1

– Data generating distributions: All graphs where each edge 𝒆 is 
independently present with probability 𝑝𝑒.

• But … 
– Edges are not independent in real graphs
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Examples: Location Trajectories
• Neighboring tables differ in one location (at one point of  

time) of  an individual

• Pufferfish meaning
– Data: a matrix of  locations
– Secrets: Whether or not individual was at some location at some 

point of  time
– Data Generating Distributions: All trajectories where an 

individual’s location at some time is independent of  all other 
locations …

• But … 
– Current location depends on previous locations…
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Common Themes

• What are secrets and neighboring datasets for different 
applications?

• Correlations between protected objects requires further 
redefinition of  privacy

• New privacy definitions requires new algorithm design
• Many open questions
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Social Network

• Represented using a graph 𝐺(𝑉, 𝐸)
– 𝑉: node set (individuals)
– 𝐸: edge set (social links)
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Social Network

• Attacks on graph anonymization

Tutorial: Differential Privacy in the Wild 92

“a third of  the users on both Twitter and Flickr, can 

be re-identified in the anonymous Twitter graph 
with only a 12% error rate.” [NS09]

“it is possible for an adversary to learn whether edges 
exist or not between specific targeted pairs of  nodes.” 
[BDK07]
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Private Analysis of  Social Network

Differential Privacy: 𝑓𝑝𝑟𝑖𝑣𝑎𝑡𝑒	 is 𝜖-differentially private if  
for all neighbors 𝐺, 𝐺b and output 𝑆: 

𝑃𝑟 𝑓𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝐺, 𝜖 ∈ 𝑆 ≤ 𝑒gPr[𝑓𝑝𝑟𝑖𝑣𝑎𝑡𝑒(𝐺b, 𝜖) ∈ 𝑆]
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Person 1
v1

Person 2
v2

Person 3 Person N
vN

Trusted Server

𝑓𝑝𝑟𝑖𝑣𝑎𝑡𝑒(𝐺, 𝜖)

v3
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Variants of  DP for Social Network

• Edge Differential Privacy

Two graphs are neighbors if  they differ in the 
presence of  one edge
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Secret: social links between individuals
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Variants of  DP for Social Network

• Node Differential Privacy

Two graphs are neighbors if  one can be obtained by 
another by adding or removing a node and all its edges 
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Secret: presence of  an individual

Module 6



Examples for Social Network Statistics

• Degree distribution 𝐷(𝐺)
• Number of  edges
• Counts of  small subgraphs

e.g triangles, 𝑘-triangles, 𝑘-stars, etc. 

• Cut
• Distance to nearest graph with a certain 

property
• Joint degree distribution 
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Examples for Social Network Statistics

• Degree distribution 𝐷(𝐺)

Tutorial: Differential Privacy in the Wild 97

𝐷(𝐺) = [0,5,0,0,0,1]

Degree 0 1 2 3 4 5
Frequency 0 5 0 0 0 1
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Global Sensitivity of  Degree 
Distribution

• What is the global sensitivity of  the degree 
distribution of  𝐺 𝑉, 𝐸 , where 𝑉 = 𝑛	under  
Edge differential privacy?
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Global Sensitivity of  Degree 
Distribution

• What is the global sensitivity of  the degree 
distribution of  𝐺 𝑉, 𝐸 , where 𝑉 = 𝑛	under  
Edge differential privacy?

Tutorial: Differential Privacy in the Wild 99

Answer: 4
Remove edge (𝑖, 𝑗), the changes in degree frequency 

Degree … 𝑑𝑖-1 𝑑𝑖 … 𝑑𝒋-1 𝑑𝒋 …
Frequency … +1 -1 … +1 -1 …
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Global Sensitivity of  Degree 
Distribution (Exercise)

• What is the global sensitivity of  the degree 
distribution of  𝐺 𝑉, 𝐸 , where 𝑉 = 𝑛	under  
Node differential privacy?
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Global Sensitivity of  Degree 
Distribution (Exercise)

• What is the global sensitivity of  the degree 
distribution of  𝐺 𝑉, 𝐸 , where 𝑉 = 𝑛	under  
Node differential privacy?
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Answer: 2n-1

𝐷(𝐺) = [0,5,0,0,0,1] 𝐷(𝐺′) = [5,0,0,0,0,0]

Highly Sensitive!!à Too much noise
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Approach to Highly Sensitive Queries

Key idea: 
• Projection 𝐺 on 𝜽-degree-bounded graphs 𝐺𝜃
• Answer queries on 𝐺𝜃 instead of  𝐺

𝐷 𝐺ª = 𝐷 𝐺𝜃 + 𝑛𝑜𝑖𝑠𝑒

• Existing approaches for degree distribution 
– Node-based truncation [KNRS13]
– Lipschitz extensions [RS15]
– Edge-based projection [DLL16] 
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How much noise?

• Answer queries on 𝐺𝜃 instead of  𝐺
𝐷 𝐺ª = 𝐷 𝐺𝜃 + 𝑛𝑜𝑖𝑠𝑒

• Sensitivity
– Node-based truncation: 2𝜃 ⋅ 𝛿
• Smooth sensitivity approach 

[NRS07]

– Lipschitz extensions: 6𝜃
– Edge-based projection: 2𝜃 + 1
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Applicable to count
- edges
- small subgraph

[KNRS13]
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Work on Edge DP
• Degree distribution
– Global sensitivity + Post-processing [HLM09, HRMS10, 

KS12, LK13]
• Small subgraph counting
– Smooth sensitivity [NR07]
– Ladder function [ZCPSX15]
– Noisy sensitivity [DL09]

• Cut
– Random projections, global sensitivity [BBDS1212] 
– Iterative updates [HR10, GRU12]

• Releasing differentially private graph 
– Exponential random graphs [LM14, KSK15]
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Outline of  Module 6

• Pufferfish Privacy for Non-tabular Data

• Blowfish Privacy
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Social network Location trajectory

Module 6



Location Trajectory

High uniqueness & High predictability 
[MHVB13] [SQBB10] 

‘show me how you move and     I will tell you who you are’   
[GKC10]

‘geosocial service “check in” dropped from 18% to 12%’
in the Pew Research Center’s Internet Project, 2013
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Rich Domain for Secrets

Neighbors differ 
in 

What to hide?

Trajectory All properties of  the individual are secret
e.g. Where is home location?

Window Properties within a small window
e.g. Did user visit home in the last hour?

Event Properties at a specific time
e.g. Was user at work or at home at time t?

Geo-
indistinguishability 

Some properties (not all) at a specific time 
e.g. Did user visit near home at time t ?
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Overview of  Privacy Definitions

Neighbors differ 
in 

What to hide?

Trajectory All properties of  the individual are secret
e.g. Where is home location?

Window Properties within a small window
e.g. Did user visit home in the last hour?

Event Properties at a specific time
e.g. Was user at work or at home at time t?

Geo-
indistinguishability 

Some properties (not all) at a specific time 
e.g. Did user visit near home at time t ?
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Protect a Single Location

• Protect a single location 

• A mechanism satisfies 𝝐-geo-indistinguishability iff for all 
observations 𝑆 ⊆ 𝑍, for all 𝑟 > 0 , for all neighbors 𝑥, 𝑥′ ∶
𝑑(𝑥, 𝑥′) ≤ 𝑟,

Pr 𝑆 𝑥 ≤ 𝑒g²𝑃𝑟	[𝑆|𝑥b]	
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e.g. Location-based Services (LBS) 
to find a restaurant
• Not reveal the exact location
• Revealing an approximate 

location is ok

[ABCP13]

𝑥

𝑥′
𝑟
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Different Levels of  Protection

• Event level DP

If  a person staying at a location for a long time 𝑥1 = 𝑥2 =
⋯ = 𝑥´, averaging (𝑧1	, . . , 𝑧𝑤) leaks the true location. 
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Total budget: 𝜖𝑡

z1 z2 z3 …. zt-1 zt
x1 x2 x3 …. xt-1 xt

Released locations
True locations

𝜖 𝜖	 𝜖	 …. 𝜖	 𝜖Privacy Budget

1 2 3 …. t-1 t  time
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Different Levels of  Protection

• 𝑤-event DP
– Neighboring stream prefix 𝑥B, 𝑥U, . . , 𝑥x , 𝑥Bb , 𝑥Ub . . , 𝑥xb

• For any 𝑖 < 𝑗, if  𝑥> ≠ 𝑥>b, and 𝑥¶ ≠ 	𝑥¶b

then 𝑗 − 𝑖 + 1 ≤ 𝑤	
• 𝑥> and 𝑥>b are the same or neighboring

àProtect updates happening within 𝑤-event with privacy 
budget 𝜖
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x1 x2 xi …. xj …. xt
x'1 x’2 x’i …. x’j …. x’t

≤ 𝑤 time
Module 6

[KPXP14]



Different Levels of  Protection

• 𝑤-event DP
– E.g. 𝑤=3
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z1 z2 z3 z4 …. zt-1 zt
x1 x2 x3 x4 …. xt-1 xt

Released locations
True locations

	𝜖

1 2 3 …. t-1 t  time

[KPXP14]
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Different Levels of  Protection

• 𝑤-event DP
– E.g. 𝑤=3
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z1 z2 z3 z4 …. zt-1 zt
x1 x2 x3 x4 …. xt-1 xt

Released locations
True locations

	𝜖

1 2 3 …. t-1 t  time
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Different Levels of  Protection

• 𝑤-event DP
– Allow budget allocation strategy: 
• Adaptive assign privacy budgets to events within the same 
𝑤-window
• E.g. 𝑤=3
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z1 z2 z3 z4 …. zt-1 zt
x1 x2 x3 x4 …. xt-1 xt

Released locations
True locations

g
�

g
·

g
U

g
·

1 2 3 …. t-1 t  time

	𝜖
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Different Levels of  Protection

• 𝑤-event DP
– Allow budget allocation strategy: 
• Adaptive assign privacy budgets to events within the same 
𝑤-window
• E.g. 𝑤=3
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z1 z2 z3 z4 …. zt-1 zt
x1 x2 x3 x4 …. xt-1 xt

Released locations
True locations

g
�

g
·

g
U

g
·

1 2 3 …. t-1 t  time

5
6 𝜖 ≤ 𝜖
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Different Levels of  Protection

• Trajectory-level DP for entire trajectory
– Neighboring databases 𝐷1, 𝐷2
• Differ in one entire trajectory

– Release aggregate statistics for multiple trajectories
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z1 z2 z3 …. zt-1 zt
x1 x2 x3 …. xt-1 xt

Released locations
True locations

	𝜖Privacy Budget

1 2 3 …. t-1 t  time

[CAC12, HCMPS15]
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Different Level of  Privacy Protection

• Pufferfish Privacy for Non-tabular Data
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Social network Location trajectory

• Edge DP 
• Node DP 

• 𝜖-indistinguishability 
• Event DP
• 𝑤-event DP
• Trajectory level DP 
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Outline of  Module 6

• Pufferfish Privacy for Non-tabular Data

• Blowfish Privacy
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Social network Location trajectory

Module 6



Blowfish Privacy

• Special case of  Pufferfish that satisfies sequential 
composition

• A framework for redefining neighboring databases for 
complex datatypes using a policy graph
– Captures many neighboring definitions
– Handles correlations induced by constraints on database

• Prior data releases
• Location constraints
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Blowfish

• Differential Privacy: 
For all outputs 𝑜, for all |𝐷B −	𝐷U| 	= 	1,
Pr	[𝐴(𝐷B) 	= 𝑜] 	≤ 𝑒gPr	[𝐴(𝐷U) 	= 𝑜]

• Blowfish Privacy: 
For all outputs 𝑜, for all 𝐷B, 𝐷U ∈ 	𝑵𝑮
Pr	[𝐴(𝐷B) 	= 𝑜] 	≤ 𝑒gPr	[𝐴(𝐷U) 	= 𝑜]
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Redefined 
neighbor 
relation

Module 6



Algorithm Design Simplified

• Transformational equivalence between Blowfish and 
differential privacy

• No need to do algorithm design from scratch for each 
definition

• Answering queries under a Blowfish privacy policy is 
equivalent in error to answering transformed queries 
under differential privacy
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Intuition

For all outputs 𝑜, for all |𝐷B −	𝐷U| 	= 	1,
Pr	[𝐴(𝐷B) 	= 𝑜] 	≤ 𝑒gPr	[𝐴(𝐷U) 	= 𝑜]

Is equivalent to

For all outputs 𝑜, for all 	𝐷B, 𝐷U
Pr	[𝐴(𝐷B) 	= 𝑜] 	≤ 𝑒g¼(�o,�½)Pr	[𝐴(𝐷U) 	= 𝑜]	

where Δ(𝐷B, 𝐷U) is the size of  symmetric difference
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Definitions differ in distance metrics

• Differential Privacy: 
For all outputs 𝑜, for all 	𝐷B, 𝐷U
Pr	[𝐴(𝐷B) 	= 𝑜] 	≤ 𝑒g¼(�o,�½)Pr	[𝐴(𝐷U) 	= 𝑜]	

• Blowfish Privacy: 
For all outputs 𝑜, for all 	𝐷B, 𝐷U
Pr	[𝐴(𝐷B) 	= 𝑜] 	≤ 𝑒g¿(�o,�½)Pr	[𝐴(𝐷U) 	= 𝑜]
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Distance metric 
imposed by 

neighbor relation

Module 6



Transformational equivalence …

… achieved by embedding distance imposed by 
neighbor definition in Blowfish to distance metric 
imposed by neighbors that differ in one record. 
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Extending Differential Privacy via 
Metrics

• [CEBP13] propose generalizations of  differential 
privacy using metrics
– Special case of  Pufferfish and generalizes Blowfish

• [WSC17] use a similar intuition to derive a generalized 
sensitivity notion for using Laplace mechanism for 
Pufferfish
– Based on Wasserstein distances
– Computing this generalized sensitivity can be intractable
– Examples of  intractability also shown in [KM11, HMD14]
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Module 6: Applications II

• Pufferfish Privacy for Non-tabular Data

• Blowfish Privacy
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Social network Location trajectories

Module 6



Open Questions

• Identify realistic policies for real world applications.
– Is it socially acceptable to offer weaker privacy protection to 

high-degree nodes?

• Algorithm design under complicated constraints or 
correlations. 
– Correlations within both trajectories and between users, e.g. 

family members may share similar trajectories patterns. 
– Highly sensitive queries under constraints or correlations.  

• Privacy analysis across different guarantees. 
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MODULE 7:
SUMMARY
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Module 7: Summary

• Recap of  tutorial
• Five Cross-cutting ideas
• Challenges
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Statistical database privacy

• Statistical database privacy is the problem of  
releasing aggregates while not disclosing individual 
records

• Privacy desiderata
– Resilience to background knowledge
– Composition
– Avoid privacy by obscurity: public 

algorithms/implementations
• Utility desiderata
– Accurate
– Useful
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Tutorial Summary

• Applications
– Query answering
– Machine learning
– Analysis of  network data 
– Trajectories

• Real-world deployments: 
– U.S. Census Bureau OnTheMap: commuting patterns
– Google RAPPOR: browser settings

• Formal privacy definitions
– Differential privacy, Pufferfish, Blowfish
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Cross-cutting ideas

1. Higher accuracy through careful composition
– Parallel composition, advanced composition

2. Where to inject noise?
– On input, output, intermediate result
– Find “information bottleneck” that has tight bound 

on sensitivity
–May be dictated by application (e.g., RAPPOR)
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Cross-cutting ideas
3. Lossy transformations
– Histograms: adaptive binning
– RAPPOR: bloom filters
– Social networks: degree-bounded graphs
– … results in bias-variance tradeoffs

4. Leverage domain knowledge
– OnTheMap: previously published data
– RAPPOR: heavy hitters
– Network data: tends to be sparse
– Histograms: smooth, sparse
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Cross-cutting ideas

5. Privacy definition may be application specific
– Differential privacy is a rigorous definition that 

protects individual tuples…
– … but this may not align with semantics of  

application
– In your application…
• What are the secrets?
• Who are the adversaries?  What data correlations can 

they exploit?
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[Erlingsson et al, CCS 2014]

Challenge 1: From Prototypes to 
Deployments

• Community needs more examples of  real-world 
deployments

• Demonstrate usefulness in real applications
• These raise important research problems
– Hardening against side-channel attacks [M12]
–Matching formal privacy guarantee to needs of  

application
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• Today, getting DP to work in practice requires a 
team of  experts

• … resembles early days of  database research…

Challenge 2: From Algorithms to 
Systems
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… without exception ad hoc, 
cumbersome, and difficult to 
use – they could really only be 
used by people having highly 
specialized technical skills …

E. F. Codd on the state of  
databases in early 1970s 



• Today, getting DP to work in practice requires a team of  
experts

• Example of  systems work: Privacy Integrated Queries 
(PINQ) [M10]
– Guarantees that programs satisfy privacy…
– … but program author responsible for accuracy

• Need more research on systems…
– Modular components
– Automatic optimization

Challenge 2: From Algorithms to 
Systems

Tutorial: Differential Privacy in the Wild 141



• Inherent tradeoff  
between utility 
and privacy

• Must be 
communicated to 
stakeholders

• Need for tunable 
algorithms

Challenge 3: Communicating privacy-
utility tradeoffs
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Thank you!
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Ashwin Machanavajjhala
Assistant Professor, Duke University

“What does privacy mean … mathematically?”

Xi He
Ph.D. Candidate, Duke University

“Can privacy algorithms work in real world systems?”

Michael Hay
Assistant Professor, Colgate University

“Can algorithms be provably private and useful?”
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